Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aparup Das is active.

Publication


Featured researches published by Aparup Das.


Trends in Parasitology | 2009

Why is it important to study malaria epidemiology in India

Vineeta Singh; Neelima Mishra; Gauri Awasthi; A. P. Dash; Aparup Das

Malaria is a major vector-borne disease in India. Based on vast geographic areas with associated topographic and climatic diversity, the variable malaria epidemiology in India is associated with high parasite genetic diversity and rapidly evolving drug resistance, differential distribution of vector species and emerging insecticide resistance and underlying human genetic diversity and past evolutionary histories. Further, changing climatic patterns have possibly changed malaria epidemiology to a great extent. The outcome of these changes is an increased incidence of Plasmodium falciparum over the P. vivax malaria in recent years. Accordingly, the drug and insecticide application policy in India has changed too. The above facts and associated rapid shifting trend of malaria epidemiology makes India a hot-spot for malaria research.


Acta Tropica | 2012

Malaria in India: The Center for the Study of Complex Malaria in India

Aparup Das; Anupkumar R. Anvikar; Lauren J. Cator; Ramesh C. Dhiman; Alex Eapen; Neelima Mishra; Bhupinder N. Nagpal; Nutan Nanda; K. Raghavendra; Andrew F. Read; Surya K. Sharma; O. P. Singh; Vineeta Singh; Photini Sinnis; Harish C Srivastava; Steven A. Sullivan; Patrick L. Sutton; Matthew B. Thomas; Jane M. Carlton; Neena Valecha

Malaria is a major public health problem in India and one which contributes significantly to the overall malaria burden in Southeast Asia. The National Vector Borne Disease Control Program of India reported ∼1.6 million cases and ∼1100 malaria deaths in 2009. Some experts argue that this is a serious underestimation and that the actual number of malaria cases per year is likely between 9 and 50 times greater, with an approximate 13-fold underestimation of malaria-related mortality. The difficulty in making these estimations is further exacerbated by (i) highly variable malaria eco-epidemiological profiles, (ii) the transmission and overlap of multiple Plasmodium species and Anopheles vectors, (iii) increasing antimalarial drug resistance and insecticide resistance, and (iv) the impact of climate change on each of these variables. Simply stated, the burden of malaria in India is complex. Here we describe plans for a Center for the Study of Complex Malaria in India (CSCMi), one of ten International Centers of Excellence in Malaria Research (ICEMRs) located in malarious regions of the world recently funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The CSCMi is a close partnership between Indian and United States scientists, and aims to address major gaps in our understanding of the complexity of malaria in India, including changing patterns of epidemiology, vector biology and control, drug resistance, and parasite genomics. We hope that such a multidisciplinary approach that integrates clinical and field studies with laboratory, molecular, and genomic methods will provide a powerful combination for malaria control and prevention in India.


Tropical Medicine & International Health | 2010

High proportion of mixed‐species Plasmodium infections in India revealed by PCR diagnostic assay

Bhavna Gupta; Purva Gupta; Arun Sharma; Vineeta Singh; A. P. Dash; Aparup Das

Accurate diagnosis is the key to effective treatment and control of malaria. We screened 180 microscopically diagnosed Indian malaria‐positive blood samples for pure and mixed infections by Plasmodium falciparum and Plasmodium vivax. An unusually high proportion of mixed infections was detected, signifying the sensitivity of PCR assay over traditional microscopic diagnosis.


PLOS ONE | 2014

Molecular evidence of Plasmodium vivax mono and mixed malaria parasite infections in Duffy-negative native Cameroonians.

Huguette Gaelle Ngassa Mbenda; Aparup Das

The malaria parasite Plasmodium vivax is known to be majorly endemic to Asian and Latin American countries with no or very few reports of Africans infected with this parasite. Since the human Duffy antigens act as receptors for P. vivax to invade human RBCs and Africans are generally Duffy-negative, non-endemicity of P. vivax in Africa has been attributed to this fact. However, recent reports describing P. vivax infections in Duffy-negative Africans from West and Central parts of Africa have been surfaced including a recent report on P. vivax infection in native Cameroonians. In order to know if Cameroonians living in the southern regions are also susceptible to P. vivax infection, we collected finger-prick blood samples from 485 malarial symptomatic patients in five locations and followed PCR diagnostic assays with DNA sequencing of the 18S ribosomal RNA gene. Out of the 201 malaria positive cases detected, 193 were pure P. falciparum, six pure P. vivax and two mixed parasite infections (P. falciparum + P. vivax). The eight P. vivax infected samples (six single + two mixed) were further subjected to DNA sequencing of the P. vivax multidrug resistance 1 (pvmdr1) and the P.vivax circumsporozoite (pvcsp) genes. Alignment of the eight Cameroonian pvmdr1 sequences with the reference sequence showed high sequence similarities, reconfirming P. vivax infection in all the eight patients. DNA sequencing of the pvcsp gene indicated all the eight P. vivax to be of VK247 type. Interestingly, DNA sequencing of a part of the human Duffy gene covering the promoter region in the eight P. vivax-infected Cameroonians to identify the T-33C mutation revealed all these patients as Duffy-negative. The results provide evidence of single P. vivax as well as mixed malaria parasite infection in native Cameroonians and add knowledge to the growing evidences of P. vivax infection in Duffy-negative Africans.


International Journal for Parasitology | 2011

Population genetic analyses of Plasmodium falciparum chloroquine receptor transporter gene haplotypes reveal the evolutionary history of chloroquine-resistant malaria in India

Gauri Awasthi; G.B.K.S. Prasad; Aparup Das

Inferring the origin and dispersal of the chloroquine-resistant (CQR) malaria parasite, Plasmodium falciparum, is of academic and public health importance. The Pfcrt gene of P. falciparum is widely known as the CQR gene and two major haplotypes of this gene (CVIET and SVMNT) occur widely across CQR-endemic regions of the globe. In India, studies to date of the Pfcrt gene have indicated the widespread prevalence of the SVMNT haplotype (prevalent in the South America and Papua New Guinea), whereas the CVIET haplotype, primarily found in southeast Asia, was not detected at a high frequency in India. This distribution pattern of the two most common CQR-Pfcrt haplotypes in India is quite surprising. Thus, in order to understand probable evolutionary and migration patterns of the CQR-Pfcrt haplotypes into India, we generated new sequence data of exon 2 of the Pfcrt gene and collected published information on the CQR-Pfcrt haplotype data from India, Papua New Guinea, southeast Asia and South America, and performed several population and evolutionary genetic analyses. Among several interesting findings, statistically significant longitudinal clines for the CVIET and SVMNT haplotypes (in opposite directions) in India, and the clustering of India and Papua New Guinea under the SVMNT-specific clade in the phylogenetic tree, are the two most remarkable aspects of the data. It also appears that both the SVMNT and CVIET haplotypes in India have migrated from southeast Asia. In particular, whereas the Indian CVIET haplotype has a southeast Asian origin, the SVMNT haplotype, prevalent in India, seems to have originated in Papua New Guinea and entered India through southeast Asia.


Advances in Parasitology | 2013

Genomics, Population Genetics and Evolutionary History of Plasmodium vivax

Jane M. Carlton; Aparup Das; Ananias A. Escalante

Plasmodium vivax is part of a highly diverse clade that includes several Plasmodium species found in nonhuman primates from Southeast Asia. The diversity of primate malarias in Asia is staggering; nevertheless, their origin was relatively recent in the evolution of Plasmodium. We discuss how humans acquired the lineage leading to P. vivax from a nonhuman primate determined by the complex geological processes that took place in Southeast Asia during the last few million years. We conclude that widespread population genomic investigations are needed in order to understand the demographic processes involved in the expansion of P. vivax in the human populations. India represents one of the few countries with widespread vivax malaria. Earlier studies have indicated high genetic polymorphism at antigenic loci and no evidence for geographic structuring. However, new studies using genetic markers in selectively neutral genetic regions indicate that Indian P. vivax presents complex evolutionary history but possesses features consistent with being part of the ancestral distribution range of this species. Such studies are possible due to the availability of the first P. vivax genome sequences. Next generation sequencing technologies are now paving the way for the sequencing of more P. vivax genomes that will dramatically increase our understanding of the unique biology of this species.


Molecular Ecology | 2012

Inferring the evolutionary history of Indian Plasmodium vivax from population genetic analyses of multilocus nuclear DNA fragments

Bhavna Gupta; Nalini Srivastava; Aparup Das

The human malaria parasite Plasmodium vivax is globally widespread, causing high malaria morbidity. As P. vivax is highly endemic to India, and previous reports indicate genetic homogeneity in population samples, we tested the hypothesis of no genetic structuring in Indian P. vivax. Further, based on the reports of increasing incidence of Plasmodium falciparum infection in comparison with P. vivax in recent years in India, it was important to understand whether reduction in population size has resulted in decrease in P. vivax infection rate in India. For this, we utilized recently developed putatively neutral markers from chromosome 13 of P. vivax to score single nucleotide polymorphisms in 126 P. vivax isolates collected from 10 different places in India. The overall results indicated that Indian P. vivax bears high nucleotide diversity within population samples but moderate amount of genetic differentiation between population samples. STRUCTURE analysis grouped 10 population samples into three clusters based on the proportion of the genetic ancestries in each population. However, the pattern of clustering does not correlate with sampling locations in India. Furthermore, analyses of past demographic events indicated reduction in population size in majority of population samples, but when isolates from all the 10 samples were considered as a single population, the data fit to the demographic equilibrium model. All these observations clearly indicate that Indian P. vivax presents complex evolutionary history but possesses several features of being a part of ancestral distribution range of this species.


Memorias Do Instituto Oswaldo Cruz | 2012

Pfcrt haplotypes and the evolutionary history of chloroquine-resistant Plasmodium falciparum

Gauri Awasthi; Godavarthi Bhogendra Krishna Satya; Aparup Das

Mutations in the Pfcrt gene that change the resulting amino acids and form different haplotypes are common and correlate with the prevalence of chloroquine resistant (CQR) field isolates of the malaria parasite, Plasmodium falciparum. This correlation provides opportunities to infer the global evolutionary history of CQ resistance by analysing CQR Pfcrt haplotype data. We collated data on the Pfcrt haplotypes from different global studies and performed evolutionary genetic analysis to present comprehensive and comparative information on the global distribution of five major CQR-Pfcrt haplotypes and evolutionary inter-relationships among 38 different countries. Using the haplotype diversity data, inter-continental genetic differentiation was also ascertained.


Memorias Do Instituto Oswaldo Cruz | 2013

Genetics of chloroquine-resistant malaria: a haplotypic view

Gauri Awasthi; Aparup Das

The development and rapid spread of chloroquine resistance (CQR) in Plasmodium falciparum have triggered the identification of several genetic target(s) in the P. falciparum genome. In particular, mutations in the Pfcrt gene, specifically, K76T and mutations in three other amino acids in the region adjoining K76 (residues 72, 74, 75 and 76), are considered to be highly related to CQR. These various mutations form several different haplotypes and Pfcrt gene polymorphisms and the global distribution of the different CQR- Pfcrt haplotypes in endemic and non-endemic regions of P. falciparum malaria have been the subject of extensive study. Despite the fact that the Pfcrt gene is considered to be the primary CQR gene in P. falciparum , several studies have suggested that this may not be the case. Furthermore, there is a poor correlation between the evolutionary implications of the Pfcrt haplotypes and the inferred migration of CQR P. falciparum based on CQR epidemiological surveillance data. The present paper aims to clarify the existing knowledge on the genetic basis of the different CQR- Pfcrt haplotypes that are prevalent in worldwide populations based on the published literature and to analyse the data to generate hypotheses on the genetics and evolution of CQR malaria.


PLOS ONE | 2012

Natural selection mediated association of the Duffy (FY) gene polymorphisms with Plasmodium vivax malaria in India.

Anita Chittoria; Sujata Mohanty; Yogesh K. Jaiswal; Aparup Das

The Duffy (Fy) antigens act as receptors for chemokines as well as for Plasmodium vivax to invade human RBCs. A recent study has correlated the occurrence of the FY*A allele of Duffy gene with decreased susceptibility to vivax malaria, but no epidemiological correlation between the distribution of FY*A allele and incidences of vivax malaria has been established so far. Furthermore, if such correlations exist, whether natural selection has mediated the association, is an important question. Since India is highly endemic to P. vivax malaria with variable eco-climatic and varying vivax malaria epidemiology across different regions, such a question could well be answered in Indians. For this, we have genotyped the FY gene at the −33rd and the 125th nucleotide positions in 250 Indians sampled from six different zonal plus one tribal population covering the whole of India and studied possible correlations with eco-climatic and vivax malaria incidences. No FY*O allele was found, however, both the FY*A and FY*B alleles forming FY*A/FY*A, FY*A/FY*B and FY*B/FY*B genotypes were widely distributed among Indians. Five out of seven population samples significantly deviated from the Hardy-Weinberg equilibrium expectation, and two alleles (FY*A and FY*B) and the homozygote genotype, FY*B/FY*B were clinally distributed over the population coordinates. Furthermore, vivax malaria incidences over the past five years were significantly negatively and positively associated with the frequencies of the FY*A and FY*B alleles, respectively. The Northern Indians were highly differentiated from the other zonal population samples at the FY gene, as evidenced from the reconstructed Neighbor-Joining phylogenetic tree. The results specify the role of natural selection in the distribution of FY gene polymorphism in India. Furthermore, the hypotheses on the part of the FY*A allele in conferring protection to vivax malaria could be validated following population genetic studies in a vivax malaria epidemiological setting, such as India.

Collaboration


Dive into the Aparup Das's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. P. Dash

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Gauri Awasthi

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Bhavna Gupta

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Suchi Tyagi

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Hemlata Srivastava

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Meenu Sharma

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Upasana Shyamsunder Singh

Indian Council of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Vineeta Singh

National Institute of Malaria Research

View shared research outputs
Top Co-Authors

Avatar

Huguette Gaelle Ngassa Mbenda

National Institute of Malaria Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge