Apollon Papadimitriou
Hoffmann-La Roche
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Apollon Papadimitriou.
mAbs | 2013
Tilman Schlothauer; Petra Rueger; Jan Olaf Stracke; Hubert Hertenberger; Felix Fingas; Lothar Kling; Thomas Emrich; Georg Drabner; Stefan Seeber; Johannes Auer; Stefan Koch; Apollon Papadimitriou
The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity.
Bioanalysis | 2011
Roland F Staack; Jan Olaf Stracke; Kay Stubenrauch; Rudolf Vogel; Julia Schleypen; Apollon Papadimitriou
Ligand-binding assays are the standard technology used for bioanalysis of therapeutic proteins, for example, for drug quantification (pharmacokinetics assays) and immunogenicity testing (antidrug antibody assays). Besides the selection of the most suitable technology platform (e.g., ELISA, electrochemiluminescence assays and surface plasmon resonance assays) and assay procedure, a pivotal prerequisite for good assay performance on any technology platform is the design, production and characterization of high quality reagents. To enable bioanalytical project support over the complete product life cycle, an appropriate long-term reagent supply is needed. This perspective describes our opinion on the requirements for generation and QC of critical reagents used in ligand-binding assays for drug quantification and antidrug antibody detection to enable high-quality assays and long-term supply, including reagent batch switches. The critical parameters during reagent design, production and long-term supply, along with the appropriate analytical methods for QC testing and appropriate certification, are discussed.
mAbs | 2014
Jan Olaf Stracke; Thomas Emrich; Petra Rueger; Tilman Schlothauer; Lothar Kling; Alexander Knaupp; Hubert Hertenberger; Andreas Wolfert; Christian Spick; Wilma Lau; Georg Drabner; Ulrike Reiff; Hans Koll; Apollon Papadimitriou
Preserving the chemical and structural integrity of therapeutic antibodies during manufacturing and storage is a major challenge during pharmaceutical development. Oxidation of Fc methionines Met252 and Met428 is frequently observed, which leads to reduced affinity to FcRn and faster plasma clearance if present at high levels. Because oxidation occurs in both positions simultaneously, their individual contribution to the concomitant changes in pharmacokinetic properties has not been clearly established. A novel pH-gradient FcRn affinity chromatography method was applied to isolate three antibody oxidation variants from an oxidized IgG1 preparation based on their FcRn binding properties. Physico-chemical characterization revealed that the three oxidation variants differed predominantly in the number of oxMet252 per IgG (0, 1, or 2), but not significantly in the content of oxMet428. Corresponding to the increase in oxMet252 content, stepwise reduction of FcRn affinity in vitro, as well as faster clearance and shorter terminal half-life, in huFcRn-transgenic mice were observed. A single Met252 oxidation per antibody had no significant effect on pharmacokinetics (PK) compared with unmodified IgG. Importantly, only molecules with both heavy chains oxidized at Met252 exhibited significantly faster clearance. In contrast, Met428 oxidation had no apparent negative effect on PK and even led to somewhat improved FcRn binding and slower clearance. This minor effect, however, seemed to be abrogated by the dominant effect of Met252 oxidation. The novel approach of functional chromatographic separation of IgG oxidation variants followed by physico-chemical and biological characterization has yielded the first experimentally-backed explanation for the unaltered PK properties of antibody preparations containing relatively high Met252 and Met428 oxidation levels.
PLOS ONE | 2014
Jasmin F. Sydow; Florian Lipsmeier; Vincent Larraillet; Maximiliane Hilger; Bjoern Mautz; Michael Molhoj; Jan Kuentzer; Stefan Klostermann; Juergen Schoch; Hans R. Voelger; Joerg Thomas Regula; Patrick Cramer; Apollon Papadimitriou; Hubert Kettenberger
Monoclonal antibodies (mAbs) and proteins containing antibody domains are the most prevalent class of biotherapeutics in diverse indication areas. Today, established techniques such as immunization or phage display allow for an efficient generation of new mAbs. Besides functional properties, the stability of future therapeutic mAbs is a key selection criterion which is essential for the development of a drug candidate into a marketed product. Therapeutic proteins may degrade via asparagine (Asn) deamidation and aspartate (Asp) isomerization, but the factors responsible for such degradation remain poorly understood. We studied the structural properties of a large, uniform dataset of Asn and Asp residues in the variable domains of antibodies. Their structural parameters were correlated with the degradation propensities measured by mass spectrometry. We show that degradation hotspots can be characterized by their conformational flexibility, the size of the C-terminally flanking amino acid residue, and secondary structural parameters. From these results we derive an accurate in silico prediction method for the degradation propensity of both Asn and Asp residues in the complementarity-determining regions (CDRs) of mAbs.
Growth Factors Journal | 2003
Tobias Stoeger; Gabriele Proetzel; Heike Welzel; Apollon Papadimitriou; Carola Dony; Rudi Balling; Clementine Hofmann
We examined the molecular progression of ectopic bone development upon application of recombinant human bone morphogenetic protein-2 (rhBMP2), using a commercial collagen type I carrier, in the hind quarter muscles of mice. We performed a gene expression study using mRNA in situ hybridisation to compare embryonic cartilage and bone formation with BMP2-induced ectopic bone formation. As bone growth can be induced postnatally or in adult animals, we examined the expression of molecules regulating embryonic bone development. We found that the mRNAs of the same molecules, such as Indian hedgehog (IHH), parathyroid hormone (PTH)/PTH-related peptide receptor (PPR) and BMPs, that regulate embryonic cartilage and bone development, are expressed during BMP-induced ectopic bone formation, suggesting parallels in the mechanisms controlling these processes. Our studies support by molecular means the previous findings in rats that BMP2-induced ectopic bone formation in mice undergoes bone development involving both modes, endochondral and intramembranous ossification, simultaneously at different sites of the implant.
PLOS ONE | 2012
Anne Zeck; Jörg T. Regula; Vincent Larraillet; Björn Mautz; Oliver Popp; Ulrich Göpfert; Frank Wiegeshoff; Ulrike E. E. Vollertsen; Ingo H. Gorr; Hans Koll; Apollon Papadimitriou
Sequence variants in recombinant biopharmaceuticals may have a relevant and unpredictable impact on clinical safety and efficacy. Hence, their sensitive analysis is important throughout bioprocess development. The two stage analytical approach presented here provides a quick multi clone comparison of candidate production cell lines as a first stage, followed by an in-depth analysis including identification and quantitation of aberrant sequence variants of selected clones as a second stage. We show that the differential analysis is a suitable tool for sensitive and fast batch to batch comparison of recombinant proteins. The optimized approach allows for detection of not only single amino acid substitutions in unmodified peptides, but also substitutions in posttranslational modified peptides such as glycopeptides, for detection of truncated or elongated sequence variants as well as double amino acid substitutions or substitution with amino acid structural isomers within one peptide. In two case studies we were able to detect sequence variants of different origin down to a sub percentage level. One of the sequence variants (Thr → Asn) could be correlated to a cytosine to adenine substitution at DNA( desoxyribonucleic acid) level. In the second case we were able to correlate the sub percentage substitution (Phe → Tyr) to amino acid limitation in the chemically defined fermentation medium.
Bioanalysis | 2015
Lakshmi Amaravadi; An Song; Heather Myler; Theingi Thway; Susan Kirshner; Viswanath Devanarayan; Yan G. Ni; Fabio Garofolo; Herbert Birnboeck; Susan Richards; Shalini Gupta; Linlin Luo; Clare Kingsley; Laura Salazar-Fontana; Stephanie Fraser; Boris Gorovits; John Allinson; Troy E. Barger; Shannon D Chilewski; Marianne Scheel Fjording; Sam Haidar; Rafiqul Islam; Birgit Jaitner; John Kamerud; Noriko Katori; Corinna Krinos-Fiorotti; David Lanham; Mark Ma; Jim McNally; Alyssa Morimoto
The 2015 9th Workshop on Recent Issues in Bioanalysis (9th WRIB) took place in Miami, Florida with participation of 600 professionals from pharmaceutical and biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5 day, week-long event - A Full Immersion Bioanalytical Week - specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest in bioanalysis. The topics covered included both small and large molecules, and involved LCMS, hybrid LBA/LCMS and LBA approaches, including the focus on biomarkers and immunogenicity. This 2015 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2015 edition of this comprehensive White Paper has been divided into three parts. Part 3 discusses the recommendations for large molecule bioanalysis using LBA, biomarkers and immunogenicity. Part 1 (small molecule bioanalysis using LCMS) and Part 2 (hybrid LBA/LCMS and regulatory inputs from major global health authorities) have been published in volume 7, issues 22 and 23 of Bioanalysis, respectively.
Bioanalysis | 2015
Roland F Staack; Gregor Jordan; Maria Viert; Martin Schäfer; Apollon Papadimitriou; Julia Heinrich
AIM During development of biologics, safety and efficacy assessments are often hampered by immune responses to the treatment. The raised antidrug antibodies (ADA) might interfere with the bioanalytical method and complicate result interpretation if non-fully characterized bioanalytical methods were applied. METHODS Here, we report an approach to characterize a ligand-binding assay (LBA) for the quantification of active drug exposure of a bifunctional therapeutic protein in the presence of antidrug antibodies, by correlating LBA results with those of a cell-based PK assay. RESULTS A clear correlation between both assays could be observed when monoclonal and polyclonal antibodies against the toxin moiety of the drug were used as ADA surrogates, and results were confirmed with human ADA-positive sera. CONCLUSION The observed correlation between the LBA-based and cell-based PK assay indicated the suitability of the developed LBA for the determination of active drug exposure in the presence of an immune response.
Bioanalysis | 2015
Julia Heinrich; Roland F Staack; Kay-Gunnar Stubenrauch; Apollon Papadimitriou
It has been well recognized in the scientific community that bioanalysis of therapeutic proteins is not limited to one ‘correct’ result but several forms of the analyte might be quantified. The expanding numbers of terms for large-molecule analytes in quantitative bioanalysis for preclinical and clinical studies and the inconsistency in nomenclature have often led to confusion. Here, we propose a descriptive nomenclature for large-molecule
Bioanalysis | 2015
Martin Schäfer; Steven Challand; Eginhard Schick; Sabine Bader; Dominik Hainzl; Katja Heinig; Lutz Müller; Apollon Papadimitriou; Julia Heinrich
BACKGROUND During development of biologics, safety and efficacy assessments are often hampered by immune responses to the treatment. To assess active exposure of a drug peptide in a toxicology study, we developed an ex vivo potency assay which complemented the total drug quantification assay. METHODOLOGY Compound activity was assessed in samples of treated monkeys by cell-based cAMP measurements. For each animal, activity was compared with its predose sample to which the compound has been added at the postdose concentration as determined by a total LC-MS/MS assay. CONCLUSION We were able to show that despite a high total test compound level, activity was reduced tremendously in antidrug-antibody-positive monkeys. Therefore, the applied ex vivo potency assay supplements drug quantification methods to determine active exposures.