Apoorv Tiwari
G. B. Pant University of Agriculture and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Apoorv Tiwari.
The Plant Genome | 2016
Anil Kumar; Divya Sharma; Apoorv Tiwari; J.P. Jaiswal; Narender Singh; Salej Sood
GBS analysis generated 33 GB of data with 160 million raw reads. Population structure analysis revealed three subpopulations among the finger millet accessions. A total of 1128 GO terms were assigned to SNP carrying genes. GBS analysis would be useful for future marker‐assisted breeding applications.
PLOS ONE | 2018
Divya Sharma; Apoorv Tiwari; Salej Sood; Gautam Jamra; Narender Singh; Prabina Kumar Meher; Anil Kumar
Finger millet (Eleusine coracana L.) is an important dry-land cereal in Asia and Africa because of its ability to provide assured harvest under extreme dry conditions and excellent nutritional properties. However, the genetic improvement of the crop is lacking in the absence of suitable genomic resources for reliable genotype-phenotype associations. Keeping this in view, a diverse global finger millet germplasm collection of 113 accessions was evaluated for 14 agro-morphological characters in two environments viz. ICAR-Vivekananda Institute of Hill Agriculture, Almora (E1) and Crop Research Centre (CRC), GBPUA&T, Pantnagar (E2), India. Principal component analysis and cluster analysis of phenotypic data separated the Indian and exotic accessions into two separate groups. Previously generated SNPs through genotyping by sequencing (GBS) were used for association mapping to identify reliable marker(s) linked to grain yield and its component traits. The marker trait associations were determined using single locus single trait (SLST), multi-locus mixed model (MLMM) and multi-trait mixed model (MTMM) approaches. SLST led to the identification of 20 marker-trait associations (MTAs) (p value<0.01 and <0.001) for 5 traits. While advanced models, MLMM and MTMM resulted in additional 36 and 53 MTAs, respectively. Nine MTAs were common out of total 109 associations in all the three mapping approaches (SLST, MLMM and MTMM). Among these nine SNPs, five SNP sequences showed homology to candidate genes of Oryza sativa (Rice) and Setaria italica (Foxtail millet), which play an important role in flowering, maturity and grain yield. In addition, 67 and 14 epistatic interactions were identified for 10 and 7 traits at E1 and E2 locations, respectively. Hence, the 109 novel SNPs associated with important agro-morphological traits, reported for the first time in this study could be precisely utilized in finger millet genetic improvement after validation.
Gene | 2018
Naved Akbar; Supriya Gupta; Apoorv Tiwari; K.P. Singh; Anil Kumar
In the present study, we identified seven major genes of oxalic acid biosynthesis pathway (SGAT, GGAT, ICL, GLO, MHAR, APO and OXO) from developing spike transcriptome of finger millet using rice as a reference. Sequence alignment of identified genes showed high similarity with their respective homolog in rice except for OXO and GLO. Transcript abundance (FPKM) reflects the higher accumulation of identified genes in GP-1 (low calcium genotype) as compared to GP-45 (high calcium genotype) which was further confirmed by qRT-PCR analysis, indicating differential oxalate formation in both genotypes. Determination of oxalic acid and tartaric acid content in developing spikes explain that higher oxalic acid content in GP-1 however, tartaric acid content was more in GP-45. Higher calcium content in GP-45 and lower oxalate accumulation may be due to the diversion of more ascorbic acid into tartaric acid and may correspond to less formation of calcium oxalate. Our results suggest that more than one pathway for oxalic acid biosynthesis might be present in finger millet with probable predominance of ascorbate-tartarate pathway rather than glyoxalate-oxalate conversion. Thus, finger millet can be use as an excellent model system for understanding more specific role of nutrients-antinutrients interactions, as evident from the present study.
Bioinformation | 2018
Manu Gaur; Apoorv Tiwari; Ravendra P. Chauhan; Dinesh Pandey; Anil Kumar
Phytoalexins are small antimicrobial molecules synthesized and accumulated by plants upon exposure to pathogens. Camalexin is an indole-derived phytoalexin, which is accumulated in plants including Arabidopsis thaliana, and other Brassicaceae, which plays a major role in disease resistance against fungal pathogens. The productivity of Brassica crops is adversely affected by Alternaria blight disease, which is caused by Alternaria brassicae. In Arabidopsis thaliana, MAP kinase signalling cascade is known to be involved in synthesis of camalexin, which contributes to disease resistance against a necrtrophic fungal pathogen, Botrytis cinerea. In the present study, MAPK signalling cascade leading to biosynthesis of camalexin that triggers defense responses in B. rapa upon exposure to the most devastating nectrophic fungus, Alternaria brassicae has been elucidated with the help of previously reported MAPK cascade in Arabidopsis thaliana, Molecular modelling, docking, and protein-protein interaction analysis of MAP kinases retrieved from Brassica rapa genome have been carried out to reveal the above cascade. The tertiary structure prediction of MAPKs obtained through molecular modelling revealed that all the protein models fulfil the criteria of being the stable structures. The molecular docking of predicted models for elucidating potential partners of MAPKs revealed strong interactions between MKK1, MKK4, MKK5, MAPK3 and MAPK6 with MKK9. The MAPK signalling cascade also shows different genes that express and play major role in camalexin biosynthesis in B. rapa during defense response to A. brassicae. The understanding of MAPK defense signaling pathway in B. rapa against devastating fungal pathogen Alternaria brassicae would help in devising strategies to develop disease resistance in Brassica crops.
Bioinformation | 2017
Rajhans Tyagi; Apoorv Tiwari; Alok Gupta; Sanjay Gupta
Starch-branching enzymes (SBEs) are one of the four major enzyme classes involved in starch biosynthesis in plants and play an important role in determining the structure and physical properties of starch granules. Multiple SBEs are involved in starch biosynthesis in plants. Finger millet is calcium rich important serial crop belongs to grass family and the transcriptome data of developing spikes is available on NCBI. In this study it was try to find out the gene sequence of starch branching enzyme and annotate the sequence and submit the sequence for further use. Rice SBE sequence was taken as reference and for characterization of the sequence different in silico tools were used. Four domains were found in the finger millet Starch branching enzyme like alpha amylase catalytic domain from 925 to2172 with E value 0, N-terminal Early set domain from 634 to 915 with E value 1.62 e-42, Alpha amylase, C-terminal all-beta domain from 2224 to 2511 with E value 5.80e-24 and 1,4-alpha-glucan-branching enzyme from 421 to 2517 with E value 0. Major binding interactions with the GLC (alpha-d-glucose), CA (calcium ion), GOL (glycerol), TRS (2-amino-2-hydroxymethylpropane- 1, 3-diol), MG (magnesium ion) and FLC (citrate anion) are fond with different residues. It was found in the phylogenetic study of the finger millet SBE with the 6 species of grass family that two clusters were form A and B. In cluster A, finger millet showed closeness with Oryzasativa and Setariaitalica, Sorghum bicolour and Zea mays while cluster B was formed with Triticumaestivum and Brachypodium distachyon. The nucleotide sequence of Finger millet SBE was submitted to NCBI with the accession no KY648913 and protein structure of SBE of finger millet was also submitted in PMDB with the PMDB id - PM0080938. This research presents a comparative overview of Finger millet SBE and includes their properties, structural and functional characteristics, and recent developments on their post-translational regulation.
Bioinformation | 2016
Apoorv Tiwari; Himanshu Avashthi; Richa Jha; A. K. Srivastava; Vijay Kumar Garg; P.W. Ramteke; Anil Kumar
Lipoxygenase-1 (LOX-1) protein provides defense against pests and pathogens and its presence have been positively correlated with plant resistance against pathogens. Linoleate is a known substrate of lipoxygenase and it induces necrosis leading to the accumulation of isoflavonoid phytoalexins in plant leaves. Therefore, it is of interest to study the structural features of LOX-1 from Finger millet. However, the structure ofLOX-1 from Finger millet is not yet known. A homology model of LOX-1 from Finger millet is described. Domain architecture study suggested the presence of two domains namely PLAT (Phospho Lipid Acyl Transferase) and lipoxygenase. Molecular docking models of linoleate with lipoxygenase from finger millet, rice and sorghum are reported. The features of docked models showed that finger millet have higher pathogen resistance in comparison to other cereal crops. This data is useful for the molecular cloning of fulllength LOX-1 gene for validating its role in improving plant defense against pathogen infection and for various other biological processes.
Indian Journal of Experimental Biology | 2011
Neha R. Tomar; Rajesh Chandra; Rajiv Kumar; Apoorv Tiwari; Anil Kumar
Archive | 2014
Himanshu Avashthi; Budhayash Gautam; Prashant Ankur Jain; Apoorv Tiwari; Rajesh Kumar Pathak; A. K. Srivastava; Gohar Taj; Anil Kumar
Indian Journal of Experimental Biology | 2013
Rajesh Kumar; Apoorv Tiwari; Uttara Chaturvedi; Gandham Ravi Kumar; Aditya Prasad Sahoo; Sudesh Kumar; Sangeeta Tiwari
Indian Journal of Experimental Biology | 2016
Gandham Ravi Kumar; Shikha Saxena; Aditya Prasad Sahoo; Uttara Chaturvedi; Sudesh Kumar; Lakshman Santra; G. S. Desai; Singh Lv; Apoorv Tiwari