Apostolis A. Koutinas
Agricultural University of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Apostolis A. Koutinas.
Energy and Environmental Science | 2013
Carol Sze Ki Lin; Lucie A. Pfaltzgraff; Lorenzo Herrero-Davila; Egid B. Mubofu; Solhy Abderrahim; James H. Clark; Apostolis A. Koutinas; Nikolaos Kopsahelis; K. Stamatelatou; Fiona Dickson; Samarthia Thankappan; Zahouily Mohamed; Robert Brocklesby; Rafael Luque
Increasing demand for fuels and chemicals, driven by factors including over-population, the threat of global warming and the scarcity of fossil resources, strains our resource system and necessitates the development of sustainable and innovative strategies for the chemical industry. Our society is currently experiencing constraints imposed by our resource system, which drives industry to increase its overall efficiency by improving existing processes or finding new uses for waste. Food supply chain waste emerged as a resource with a significant potential to be employed as a raw material for the production of fuels and chemicals given the abundant volumes globally generated, its contained diversity of functionalised chemical components and the opportunity to be utilised for higher value applications. The present manuscript is aimed to provide a general overview of the current and most innovative uses of food supply chain waste, providing a range of worldwide case-studies from around the globe. These studies will focus on examples illustrating the use of citrus peel, waste cooking oil and cashew shell nut liquid in countries such as China, the UK, Tanzania, Spain, Greece or Morocco. This work emphasises 2nd generation food waste valorisation and re-use strategies for the production of higher value and marketable products rather than conventional food waste processing (incineration for energy recovery, feed or composting) while highlighting issues linked to the use of food waste as a sustainable raw material. The influence of food regulations on food supply chain waste valorisation will also be addressed as well as our societys behavior towards food supply chain waste. “There was no ways of dealing with it that have not been known for thousands of years. These ways are essentially four: dumping it, burning it, converting it into something that can be used again, and minimizing the volume of material goods – future garbage – that is produced in the first place.” William Rathje on waste (1945–2012) – Director of the Tucson Garbage project.
Chemical Society Reviews | 2014
Apostolis A. Koutinas; Anestis Vlysidis; Daniel Pleissner; Nikolaos Kopsahelis; Isabel Lopez Garcia; Ioannis K. Kookos; Seraphim Papanikolaou; Tsz Him Kwan; Carol Sze Ki Lin
The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.
Bioresource Technology | 2008
Chenyu Du; Sze Ki Carol Lin; Apostolis A. Koutinas; Ruohang Wang; Pilar Dorado; Colin Webb
In this study, a novel generic feedstock production strategy based on solid-state fermentation (SSF) has been developed and applied to the fermentative production of succinic acid. Wheat was fractionated into bran, gluten and gluten-free flour by milling and gluten extraction processes. The bran, which would normally be a waste product of the wheat milling industry, was used to produce glucoamylase and protease enzymes via SSF using Aspergillus awamori and Aspergillus oryzae, respectively. The resulting solutions were separately utilised for the hydrolysis of gluten-free flour and gluten to generate a glucose-rich stream of over 140gl(-1) glucose and a nitrogen-rich stream of more than 3.5gl(-1) free amino nitrogen. A microbial feedstock consisting of these two streams contained all the essential nutrients required for succinic acid fermentations using Actinobacillus succinogenes. In a fermentation using only the combined hydrolysate streams, around 22gl(-1) succinic acid was produced. The addition of MgCO3 into the wheat-derived medium improved the succinic acid production further to more than 64gl(-1). These results demonstrate the SSF-based strategy is a successful approach for the production of a generic feedstock from wheat, and that this feedstock can be efficiently utilised for succinic acid production.
Journal of Biotechnology | 2009
M. Pilar Dorado; Sze Ki Carol Lin; Apostolis A. Koutinas; Chenyu Du; Ruohang Wang; Colin Webb
A novel wheat-based bioprocess for the production of a nutrient-complete feedstock for the fermentative succinic acid production by Actinobacillus succinogenes has been developed. Wheat was fractionated into bran, middlings and flour. The bran fraction, which would normally be a waste product of the wheat milling industry, was used as the sole medium in two solid-state fermentations (SSF) of Aspergillus awamori and Aspergillus oryzae that produce enzyme complexes rich in amylolytic and proteolytic enzymes, respectively. The resulting fermentation solids were then used as crude enzyme sources, by adding directly to an aqueous suspension of milled bran and middlings fractions (wheat flour milling by-products) to generate a hydrolysate containing over 95g/L glucose, 25g/L maltose and 300mg/L free amino nitrogen (FAN). This hydrolysate was then used as the sole medium for A. succinogenes fermentations, which led to the production of 50.6g/L succinic acid. Supplementation of the medium with yeast extract did not significantly improve succinic acid production though increasing the inoculum concentration to 20% did result in the production of 62.1g/L succinic acid. Results indicated that A. succinogenes cells were able to utilise glucose and maltose in the wheat hydrolysate for cell growth and succinic acid production. The proposed process could be potentially integrated into a wheat-milling process to upgrade the wheat flour milling by-products (WFMB) into succinic acid, one of the future platform chemicals of a sustainable chemical industry.
Green Chemistry | 2009
Rafael Luque; Carol Sze Ki Lin; Chenyu Du; Duncan J. Macquarrie; Apostolis A. Koutinas; Ruohang Wang; Colin Webb; James H. Clark
A novel alternative methodology (direct crystallisation) to the traditional calcium precipitation to obtain succinic acid (SA) from defined and wheat-based fermentation broths is reported. SA crystals were successfully recovered from fermentation broths (FB) using this method. A higher SA crystal purity (95%) and yield (70%) were obtained in the direct crystallisation method compared to a slightly modified traditional calcium precipitation method (90% and 24%, respectively). Chemical transformations (e.g. esterifications) to high-added value derivatives of both recovered SA crystals were then investigated using a range of solid acids including our acidic tunable mesoporous carbonaceous materials denoted as Starbon® acids. Results showed that SA crystals could be successfully converted into mono- and diesters in high yields and selectivities employing solid acids regardless of the reaction conditions. The order of reactivity was found to be: pure SA crystals > SA crystals from defined FB > FB SA crystals. Results demonstrate that SA can be effectively purified from actual fermentation broths, showing the importance of integrating the fermentation and downstream processing to optimise the fermentative production of SA and its chemical transformations to produce high-added value derivatives.
Journal of Applied Microbiology | 2015
Sidoine Sadjeu Tchakouteu; Ourania Kalantzi; Chr. Gardeli; Apostolis A. Koutinas; George Aggelis; Seraphim Papanikolaou
To screen yeasts in relation to the potential to produce single cell oil (SCO) from biodiesel‐derived glycerol and to enhance SCO production in Lipomyces starkeyi and Rhodosporidium toruloides yeasts.
Journal of Biotechnology | 2013
Maria Metsoviti; An-Ping Zeng; Apostolis A. Koutinas; Seraphim Papanikolaou
The production of 1,3-propanediol (PD) by a newly isolated Citrobacter freundii strain [FMCC-B 294 (VK-19)] was investigated. Different grades of biodiesel-derived glycerol were employed. Slightly lower PD biosynthesis was observed in batch experiments only when crude glycerol from waste-cooking oil trans-esterification was utilized and only at elevated initial substrate concentrations employed. Batch bioreactor cultures revealed the capability of the strain to tolerate elevated amounts of substrate (glycerol up to 170 g/L) and produce quantities of PD in such high substrate concentrations. Nevertheless, maximum PD quantities (45.9 g/L) were achieved at lower initial glycerol concentrations (∼100 g/L) employed, suggesting some inhibition exerted due to the increased initial substrate concentrations. In order to improve PD production, a fed-batch fermentation was carried out and 68.1g/L of PD were produced (the highest PD quantity achieved by C. freundii strains so far) with yield per glycerol consumed ∼0.40 g/g and volumetric productivity 0.79 g/L/h. Aiming to perform a more economical and eco-friendlier procedure, batch and fed-batch fermentations under completely non-sterile conditions were carried out. During non-sterilized fed-batch process, 176 g/L of raw glycerol were converted to 66.3g/L of PD, suggesting the potentiality of the non-sterile fermentation by C. freundii FMCC-B 294.
Bioresource Technology | 2013
Isabel Lopez Garcia; Jimmy A. López; M.P. Dorado; Nikolaos Kopsahelis; Maria Alexandri; Seraphim Papanikolaou; Marcelo A. Villar; Apostolis A. Koutinas
Utilization of by-products from oilseed-based biodiesel production (crude glycerol, rapeseed meal hydrolysates) for microbial polyhydroxyalkanoate (PHA) production could lead to the replacement of expensive carbon sources, nutrient supplements and precursors for co-polymer production. Batch fermentations in shake flasks with varying amounts of free amino nitrogen led to the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) with a 2.8-8% 3HV content. Fed-batch fermentations in shake flasks led to the production of 10.9g/L P(3HB-co-3HV) and a 55.6% P(3HB-co-3HV) content. NaCl concentrations between 2 and 6g/L gradually became inhibitory to bacterial growth and PHA formation, whereas in the case of K(2)SO(4), the inhibitory effect was observed only at concentrations higher than 20g/L. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and nuclear magnetic resonance ((13)C NMR) demonstrated that the incorporation of 3HV into the obtained P(3HB-co-3HV) lowered glass transition temperature, crystallinity and melting point as compared to polyhydroxybutyrate. Integrating PHA production in existing oilseed-based biodiesel plants could enhance the viability and sustainability of this first generation biorefinery.
Journal of Biotechnology | 2014
Sofia Tsakona; Nikolaos Kopsahelis; Afroditi Chatzifragkou; Seraphim Papanikolaou; Ioannis K. Kookos; Apostolis A. Koutinas
Flour-rich waste (FRW) and by-product streams generated by bakery, confectionery and wheat milling plants could be employed as the sole raw materials for generic fermentation media production, suitable for microbial oil synthesis. Wheat milling by-products were used in solid state fermentations (SSF) of Aspergillus awamori for the production of crude enzymes, mainly glucoamylase and protease. Enzyme-rich SSF solids were subsequently employed for hydrolysis of FRW streams into nutrient-rich fermentation media. Batch hydrolytic experiments using FRW concentrations up to 205 g/L resulted in higher than 90% (w/w) starch to glucose conversion yields and 40% (w/w) total Kjeldahl nitrogen to free amino nitrogen conversion yields. Starch to glucose conversion yields of 98.2, 86.1 and 73.4% (w/w) were achieved when initial FRW concentrations of 235, 300 and 350 g/L were employed in fed-batch hydrolytic experiments, respectively. Crude hydrolysates were used as fermentation media in shake flask cultures with the oleaginous yeast Lipomyces starkeyi DSM 70296 reaching a total dry weight of 30.5 g/L with a microbial oil content of 40.4% (w/w), higher than that achieved in synthetic media. Fed-batch bioreactor cultures led to a total dry weight of 109.8 g/L with a microbial oil content of 57.8% (w/w) and productivity of 0.4 g/L/h.
Journal of Biotechnology | 2013
Seraphim Papanikolaou; Athanasios Beopoulos; Anna Koletti; Apostolis A. Koutinas; Jean-Marc Nicaud; George Aggelis
A novel approach to trigger lipid accumulation and/or citrate production in vivo through the inactivation of the 2-methyl-citrate dehydratase in Yarrowia lipolytica was developed. In nitrogen-limited cultures with biodiesel-derived glycerol utilized as substrate, the Δphd1 mutant (JMY1203) produced 57.7g/L of total citrate, 1.6-fold more than the wild-type strain, with a concomitant glycerol to citrate yield of 0.91g/g. Storage lipid in cells increased at the early growth stages, suggesting that inactivation of the 2-methyl-citrate dehydratase would mimic nitrogen limitation. Thus, a trial of JMY1203 strain was performed with glycerol under nitrogen-excess conditions. Compared with the equivalent nitrogen-limited culture, significant quantities of lipid (up to ∼31% w/w in dry weight, 1.6-fold higher than the nitrogen-limited experiment) were produced. Also, non-negligible quantities of citric acid (up to ∼26g/L, though 0.57-fold lower than the nitrogen-limited experiment) were produced, despite remarkable nitrogen presence into the medium, indicating the construction of phenotype that constitutively accumulated lipid and secreted citrate in Y. lipolytica during growth on waste glycerol utilized as substrate.