Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where April D. Harrison is active.

Publication


Featured researches published by April D. Harrison.


Molecular Cancer Therapeutics | 2013

Resveratrol Induces Differentiation Markers Expression in Anaplastic Thyroid Carcinoma via Activation of Notch1 Signaling and Suppresses Cell Growth

Xiao-Min Yu; Renata Jaskula-Sztul; Kamal Ahmed; April D. Harrison; Muthusamy Kunnimalaiyaan; Herbert Chen

Anaplastic thyroid carcinoma (ATC) is an extremely aggressive malignancy with undifferentiated features, for which conventional treatments, including radioactive iodine ablation, are usually not effective. Recent evidence suggests that the Notch1 pathway is important in the regulation of thyroid cancer cell growth and expression of thyrocyte differentiation markers. However, drug development targeting Notch1 signaling in ATC remains largely underexplored. Previously, we have identified resveratrol out of over 7,000 compounds as the most potent Notch pathway activator using a high-throughput screening method. In this study, we showed that resveratrol treatment (10–50 μmol/L) suppressed ATC cell growth in a dose-dependent manner for both HTh7 and 8505C cell lines via S-phase cell-cycle arrest and apoptosis. Resveratrol induced functional Notch1 protein expression and activated the pathway by transcriptional regulation. In addition, the expression of thyroid-specific genes including TTF1, TTF2, Pax8, and sodium iodide symporter (NIS) was upregulated in both ATC cell lines with resveratrol treatment. Notch1 siRNA interference totally abrogated the induction of TTF1 and Pax8 but not of TTF2. Moreover, Notch1 silencing by siRNA decreased resveratrol-induced NIS expression. In summary, our data indicate that resveratrol inhibits cell growth and enhances redifferentiation in ATC cells dependent upon the activation of Notch1 signaling. These findings provide the first documentation for the role of resveratrol in ATC redifferentiation, suggesting that activation of Notch1 signaling could be a potential therapeutic strategy for patients with ATC and thus warrants further clinical investigation. Mol Cancer Ther; 12(7); 1276–87. ©2013 AACR.


American Journal of Pathology | 2014

The Roles of the Epithelial-Mesenchymal Transition Marker PRRX1 and miR-146b-5p in Papillary Thyroid Carcinoma Progression

Heather Hardin; Zhenying Guo; Weihua Shan; Celina Montemayor-Garcia; Sofia Asioli; Xiao-Min Yu; April D. Harrison; Herbert Chen; Ricardo V. Lloyd

Thyroid carcinoma is the most common endocrine malignancy, and papillary thyroid carcinoma represents the most common thyroid cancer. Papillary thyroid carcinomas that invade locally or metastasize are associated with a poor prognosis. We found that, during epithelial-mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1), papillary thyroid carcinoma cells acquired increased cancer stem cell-like features and the transcription factor paired-related homeobox protein 1 (PRRX1; alias PRX-1), a newly identified EMT inducer, was markedly up-regulated. miR-146b-5p was also transiently up-regulated during EMT, and in siRNA experiments miR-146b-5p had an inhibitory role on cell proliferation and invasion during TGF-β1-induced EMT. We conclude that papillary thyroid carcinoma tumor cells exhibit increased cancer stem cell-like features during TGF-β1-induced EMT, that miR-146b-5p has a role in cell proliferation and invasion, and that PRRX1 plays an important role in papillary thyroid carcinoma EMT and disease progression.


Advanced Functional Materials | 2017

Neuroendocrine Tumor-Targeted Upconversion Nanoparticle-Based Micelles for Simultaneous NIR-Controlled Combination Chemotherapy and Photodynamic Therapy, and Fluorescence Imaging.

Guojun Chen; Renata Jaskula-Sztul; Corinne R. Esquibel; Irene Lou; Qifeng Zheng; Ajitha Dammalapati; April D. Harrison; Kevin W. Eliceiri; Weiping Tang; Herbert Chen; Shaoqin Gong

Although neuroendocrine tumors (NETs) are slow growing, they are frequently metastatic at the time of discovery and no longer amenable to curative surgery, emphasizing the need for the development of other treatments. In this study, multifunctional upconversion nanoparticle (UCNP)-based theranostic micelles are developed for NET-targeted and near-infrared (NIR)-controlled combination chemotherapy and photodynamic therapy (PDT), and bioimaging. The theranostic micelle is formed by individual UCNP functionalized with light-sensitive amphiphilic block copolymers poly(4,5-dimethoxy-2-nitrobenzyl methacrylate)-polyethylene glycol (PNBMA-PEG) and Rose Bengal (RB) photosensitizers. A hydrophobic anticancer drug, AB3, is loaded into the micelles. The NIR-activated UCNPs emit multiple luminescence bands, including UV, 540 nm, and 650 nm. The UV peaks overlap with the absorption peak of photocleavable hydrophobic PNBMA segments, triggering a rapid drug release due to the NIR-induced hydrophobic-to-hydrophilic transition of the micelle core and thus enabling NIR-controlled chemotherapy. RB molecules are activated via luminescence resonance energy transfer to generate 1O2 for NIR-induced PDT. Meanwhile, the 650 nm emission allows for efficient fluorescence imaging. KE108, a true pansomatostatin nonapeptide, as an NET-targeting ligand, drastically increases the tumoral uptake of the micelles. Intravenously injected AB3-loaded UCNP-based micelles conjugated with RB and KE108-enabling NET-targeted combination chemotherapy and PDT-induce the best antitumor efficacy.


Biomaterials | 2016

Thailandepsin A-loaded and octreotide-functionalized unimolecular micelles for targeted neuroendocrine cancer therapy

Renata Jaskula-Sztul; Wenjin Xu; Guojun Chen; April D. Harrison; Ajitha Dammalapati; Renu Nair; Yiqiang Cheng; Shaoqin Gong; Herbert Chen

Due to the overexpression of somatostatin receptors in neuroendocrine (NE) cancers, drug nanocarriers conjugated with somatostatin analogs, such as octreotide (OCT), for targeted NE cancer therapy may offer increased therapeutic efficacies and decreased adverse effects. In this study, OCT-functionalized unimolecular micelles were prepared using individual hyperbranched polymer molecules consisting of a hyperbranched polymer core (Boltorn(®) H40) and approximately 25 amphiphilic polylactide-poly(ethlyene glycol) (PLA-PEG) block copolymer arms (H40-PLA-PEG-OCH3/OCT). The resulting micelles, exhibiting a uniform core-shell shape and an average hydrodynamic diameter size of 66 nm, were loaded with thailandepsin-A (TDP-A), a relatively new naturally produced histone deacetylase (HDAC) inhibitor. In vitro studies using flow cytometry and confocal laser scanning microscopy (CLSM) demonstrated that OCT conjugation enhanced the cellular uptake of the unimolecular micelles. Consequently, TDP-A-loaded and OCT-conjugated micelles exhibited the highest cytotoxicity and caused the highest reduction of NE tumor markers. Finally, the in vivo studies on NE cancer bearing nude mice demonstrated that TDP-A-loaded and OCT-conjugated micelles possessed superior anticancer activity in comparison with other TDP-A formulations or drug alone, while showing no detectable systemic toxicity. Thus, these TDP-A-loaded and OCT-conjugated micelles offer a promising approach for targeted NE cancer therapy.


Molecular Cancer Therapeutics | 2015

Tumor-Suppressor Role of Notch3 in Medullary Thyroid Carcinoma Revealed by Genetic and Pharmacological Induction

Renata Jaskula-Sztul; Jacob Eide; Sara Tesfazghi; Ajitha Dammalapati; April D. Harrison; Xiao-Min Yu; Casi Scheinebeck; Gabrielle N. Winston-McPherson; Kevin R. Kupcho; Matthew B. Robers; Amrit K. Hundal; Weiping Tang; Herbert Chen

Notch1-3 are transmembrane receptors that appear to be absent in medullary thyroid cancer (MTC). Previous research has shown that induction of Notch1 has a tumor-suppressor effect in MTC cell lines, but little is known about the biologic consequences of Notch3 activation for the progression of the disease. We elucidate the role of Notch3 in MTC by genetic (doxycycline-inducible Notch3 intracellular domain) and pharmacologic [AB3, novel histone deacetylase (HDAC) inhibitor] approaches. We find that overexpression of Notch3 leads to the dose-dependent reduction of neuroendocrine tumor markers. In addition, Notch3 activity is required to suppress MTC cell proliferation, and the extent of growth repression depends on the amount of Notch3 protein expressed. Moreover, activation of Notch3 induces apoptosis. The translational significance of this finding is highlighted by our observation that MTC tumors lack active Notch3 protein and reinstitution of this isoform could be a therapeutic strategy to treat patients with MTC. We demonstrate, for the first time, that overexpression of Notch3 in MTC cells can alter malignant neuroendocrine phenotype in both in vitro and in vivo models. In addition, our study provides a strong rationale for using Notch3 as a therapeutic target to provide novel pharmacologic treatment options for MTC. Mol Cancer Ther; 14(2); 499–512. ©2014 AACR.


Cancer Gene Therapy | 2014

Thiocoraline activates the Notch pathway in carcinoids and reduces tumor progression in vivo.

Thomas P. Wyche; Ajitha Dammalapati; Hyunah Cho; April D. Harrison; Glen S. Kwon; Herbert Chen; Tim S. Bugni; Renata Jaskula-Sztul

Carcinoids are slow-growing neuroendocrine tumors (NETs) that are characterized by hormone overproduction; surgery is currently the only option for treatment. Activation of the Notch pathway has previously been shown to have a role in tumor suppression in NETs. The marine-derived thiodepsipeptide thiocoraline was investigated in vitro in two carcinoid cell lines (BON and H727). Carcinoid cells treated with nanomolar concentrations of thiocoraline resulted in a decrease in cell proliferation and an alteration of malignant phenotype evidenced by decrease of NET markers, achaete-scute complex like-1, chromogranin A and neurospecific enolase. Western blotting analysis demonstrated the activation of Notch1 on the protein level in BON cells. Additionally, thiocoraline activated downstream Notch targets HES1, HES5 and HEY2. Thiocoraline effectively suppressed carcinoid cell growth by promoting cell cycle arrest in BON and H727 cells. An in vivo study demonstrated that thiocoraline, formulated with polymeric micelles, slowed carcinoid tumor progression. Thus the therapeutic potential of thiocoraline, which induced activation of the Notch pathway, in carcinoid tumors was demonstrated.


Anti-Cancer Drugs | 2013

Neuroendocrine phenotype alteration and growth suppression through apoptosis by MK-2206, an allosteric inhibitor of AKT, in carcinoid cell lines in vitro.

Yash R. Somnay; Kevin Simon; April D. Harrison; Selvi Kunnimalaiyaan; Herbert Chen; Muthusamy Kunnimalaiyaan

Carcinoids are neuroendocrine malignancies characterized by their overproduction of various bioactive hormones that lead to the carcinoid syndrome. We have shown previously that AKT serves as a key regulator of growth and phenotypic expression of tumor markers in carcinoids by the genetic depletion of AKT expression. However, no small-molecule inhibitor of AKT kinase activity has been developed until recently. MK-2206, a novel allosteric inhibitor of AKT, is currently undergoing clinical trials for the treatment of solid tumors. In this study, we explored the effect of MK-2206 on carcinoid cell proliferation and bioactive hormone production in vitro in two carcinoid cell lines – pancreatic carcinoid BON and bronchopulmonary H727. Treatment with MK-2206 effectively suppressed AKT phosphorylation at serine 473 and significantly reduced cell proliferation in a dose-dependent manner. Most importantly, MK-2206 treatment resulted in a significant reduction in ASCL1, CgA, and NSE expression, collectively recognized as markers of neuroendocrine tumor malignancy. Furthermore, MK-2206-treated cells showed an increase in levels of cleaved PARP and cleaved caspase-3, with a concomitant reduction in levels of Mcl-1 and XIAP, indicating that the antiproliferative effect of MK-2206 occurs through the induction of apoptosis. In conclusion, MK-2206 suppresses carcinoid tumor growth, and alters its neuroendocrine phenotype, indicating that this drug may be beneficial for patients with carcinoid syndrome. These studies merit further clinical investigation.


Journal of Materials Chemistry B | 2017

AB3-loaded and tumor-targeted unimolecular micelles for medullary thyroid cancer treatment

Renata Jaskula-Sztul; Guojun Chen; Ajitha Dammalapati; April D. Harrison; Weiping Tang; Shaoqin Gong; Herbert Chen

Medullary thyroid cancer (MTC) is often resistant to standard therapies, emphasizing the need for the development of other treatments. A new histone deacetylase inhibitor, AB3, can effectively inhibit MTC cell proliferation in vitro. However, its poor aqueous solubility and stability, fast clearance, and lack of tumor targeting ability limit its in vivo application. Therefore, multifunctional unimolecular micelles were developed for targeted delivery of AB3 for MTC therapy. The unimolecular micelles exhibited a spherical core-shell structure, uniform size distribution, and excellent stability. AB3 was encapsulated into the hydrophobic core of the unimolecular micelles, thus significantly enhancing its aqueous solubility and stability. KE108, a somatostatin analog possessing high affinity to all five subtypes of SSTR, was used as an MTC-targeting ligand. In vitro cellular uptake analyses demonstrated that the KE108 exhibited superior targeting ability in MTC cells compared to octreotide, the first clinically used somatostatin analog. Moreover, the AB3-loaded and KE108-conjugated unimolecular micelles exhibited the best efficacy in suppressing MTC cell growth and tumor marker expression in vitro. Furthermore, AB3-loaded, KE108-conjugated micelles demonstrated the best anticancer efficacy in vivo without any apparent systemic toxicity, thereby offering a promising approach for targeted MTC therapy.


Cancer Gene Therapy | 2015

Novel analogs targeting histone deacetylase suppress aggressive thyroid cancer cell growth and induce re-differentiation.

Jang S; Xiao-Min Yu; Odorico S; Clark M; Renata Jaskula-Sztul; Casi M. Schienebeck; Kevin R. Kupcho; April D. Harrison; Gabrielle N. Winston-McPherson; Weiping Tang; Herbert Chen

To develop novel therapies for aggressive thyroid cancers, we have synthesized a collection of histone deacetylase (HDAC) inhibitor analogs named AB1 to AB13, which have different linkers between a metal chelating group and a hydrophobic cap. The purpose of this study was to screen out the most effective compounds and evaluate the therapeutic efficacy. AB2, AB3 and AB10 demonstrated the lowest half-maximal inhibitory concentration (IC50) values in one metastatic follicular and two anaplastic thyroid cancer cell lines. Treatment with each of the three ABs resulted in an increase in apoptosis markers, including cleaved poly adenosine diphosphate ribose polymerase (PARP) and cleaved caspase 3. Additionally, the expression of cell-cycle regulatory proteins p21WAF1 and p27Kip1 increased with the treatment of ABs while cyclin D1 decreased. Furthermore, AB2, AB3 and AB10 were able to induce thyrocyte-specific genes in the three thyroid cancer cell lines indicated by increased expression levels of sodium iodide symporter, paired box gene 8, thyroid transcription factor 1 (TTF1), TTF2 and thyroid-stimulating hormone receptors. AB2, AB3 and AB10 suppress thyroid cancer cell growth via cell-cycle arrest and apoptosis. They also induce cell re-differentiation, which could make aggressive cancer cells more susceptible to radioactive iodine therapy.


Oncotarget | 2017

Histone deacetylase inhibitor thailandepsin-A activates Notch signaling and suppresses neuroendocrine cancer cell growth in vivo

Samuel Jang; Andrew Janssen; Zviadi Aburjania; Matthew B. Robers; April D. Harrison; Ajitha Dammalapati; Yi-Qiang Cheng; Herbert Chen; Renata Jaskula-Sztul

Novel therapies for neuroendocrine (NE) cancers are desperately needed as they frequently present as metastatic disease and cause debilitating symptoms by secreting excessive hormones. Induction of Notch isoforms has a tumor suppressive effect in NE cancer cell lines, and we have observed that histone deacetylase inhibitors (HDACi) potently activate Notch. In this study, we describe the potential for Burkholderia thailandensis-derived class I HDACi thailandepsin A (TDP-A) as a Notch activator and therapeutic agent against NE cancer. IC50 for TDP-A was determined to be 4-6 nM in NE cancer cell lines (BON, MZ-CRC-1, and TT) without cytotoxicity to lung fibroblasts. The binding characteristics of TDP-A to its target HDAC1 was examined using bioluminescence resonance energy transfer (BRET). Western blot and flow cytometry analysis showed that TDP-A induces cell cycle arrest and apoptosis in a dose-dependent manner. TDP-A dose-dependently activated the Notch pathway as measured by increasing functional CBF1-luciferase reporter signal and mRNA and protein expressions of Notch isoforms, which were attenuated by pretreatment with γ-secretase inhibitor DAPT. Furthermore, TDP-A lead to changes in expression level of downstream targets of Notch pathway and reduced expression of NE cancer markers. An in vivo study demonstrated that TDP-A suppressed NE cancer progression. These results show that TDP-A, as a Notch activator, is a promising agent against NE cancers.

Collaboration


Dive into the April D. Harrison's collaboration.

Top Co-Authors

Avatar

Herbert Chen

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Renata Jaskula-Sztul

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ajitha Dammalapati

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Xiao-Min Yu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

H. Chen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Weiping Tang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Guojun Chen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shaoqin Gong

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yi-Qiang Cheng

University of Wisconsin–Milwaukee

View shared research outputs
Researchain Logo
Decentralizing Knowledge