Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where April N. Allen is active.

Publication


Featured researches published by April N. Allen.


Human Molecular Genetics | 2010

Association of CR1, CLU and PICALM with Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals

Jason J. Corneveaux; Amanda J. Myers; April N. Allen; Jeremy J. Pruzin; Manuel Ramirez; Anzhelika Engel; Michael A. Nalls; Kewei Chen; Wendy Lee; Kendria Chewning; Stephen Villa; Hunsar B. Meechoovet; Jill D. Gerber; Danielle Frost; Hollie Benson; Sean O'Reilly; Lori B. Chibnik; Joshua M. Shulman; Andrew Singleton; David Craig; Kendall Van Keuren-Jensen; Travis Dunckley; David A. Bennett; Philip L. De Jager; Christopher B. Heward; John Hardy; Eric M. Reiman; Matthew J. Huentelman

In this study, we assess 34 of the most replicated genetic associations for Alzheimers disease (AD) using data generated on Affymetrix SNP 6.0 arrays and imputed at over 5.7 million markers from a unique cohort of over 1600 neuropathologically defined AD cases and controls (1019 cases and 591 controls). Testing the top genes from the AlzGene meta-analysis, we confirm the well-known association with APOE single nucleotide polymorphisms (SNPs), the CLU, PICALM and CR1 SNPs recently implicated in unusually large data sets, and previously implicated CST3 and ACE SNPs. In the cases of CLU, PICALM and CR1, as well as in APOE, the odds ratios we find are slightly larger than those previously reported in clinical samples, consistent with what we believe to be more accurate classification of disease in the clinically characterized and neuropathologically confirmed AD cases and controls.


NeuroImage | 2010

Voxelwise genome-wide association study (vGWAS).

Jason L. Stein; Xue Hua; Suh Lee; April J. Ho; Alex D. Leow; Arthur W. Toga; Andrew J. Saykin; Li Shen; Tatiana Foroud; Nathan Pankratz; Matthew J. Huentelman; David Craig; Jill D. Gerber; April N. Allen; Jason J. Corneveaux; Bryan M. DeChairo; Steven G. Potkin; Michael W. Weiner; Paul M. Thompson

The structure of the human brain is highly heritable, and is thought to be influenced by many common genetic variants, many of which are currently unknown. Recent advances in neuroimaging and genetics have allowed collection of both highly detailed structural brain scans and genome-wide genotype information. This wealth of information presents a new opportunity to find the genes influencing brain structure. Here we explore the relation between 448,293 single nucleotide polymorphisms in each of 31,622 voxels of the entire brain across 740 elderly subjects (mean age+/-s.d.: 75.52+/-6.82 years; 438 male) including subjects with Alzheimers disease, Mild Cognitive Impairment, and healthy elderly controls from the Alzheimers Disease Neuroimaging Initiative (ADNI). We used tensor-based morphometry to measure individual differences in brain structure at the voxel level relative to a study-specific template based on healthy elderly subjects. We then conducted a genome-wide association at each voxel to identify genetic variants of interest. By studying only the most associated variant at each voxel, we developed a novel method to address the multiple comparisons problem and computational burden associated with the unprecedented amount of data. No variant survived the strict significance criterion, but several genes worthy of further exploration were identified, including CSMD2 and CADPS2. These genes have high relevance to brain structure. This is the first voxelwise genome wide association study to our knowledge, and offers a novel method to discover genetic influences on brain structure.


Proceedings of the National Academy of Sciences of the United States of America | 2010

A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly

April J. Ho; Jason L. Stein; Xue Hua; Suh Lee; Derrek P. Hibar; Alex D. Leow; Ivo D. Dinov; Arthur W. Toga; Andrew J. Saykin; Li Shen; Tatiana Foroud; Nathan Pankratz; Matthew J. Huentelman; David Craig; Jill D. Gerber; April N. Allen; Jason J. Corneveaux; Dietrich A. Stephan; Charles DeCarli; Bryan M. DeChairo; Steven G. Potkin; Clifford R. Jack; Michael W. Weiner; Cyrus A. Raji; Oscar L. Lopez; James T. Becker; Owen T. Carmichael; Paul M. Thompson

A recently identified variant within the fat mass and obesity-associated (FTO) gene is carried by 46% of Western Europeans and is associated with an ~1.2 kg higher weight, on average, in adults and an ~1 cm greater waist circumference. With >1 billion overweight and 300 million obese persons worldwide, it is crucial to understand the implications of carrying this very common allele for the health of our aging population. FTO is highly expressed in the brain and elevated body mass index (BMI) is associated with brain atrophy, but it is unknown how the obesity-associated risk allele affects human brain structure. We therefore generated 3D maps of regional brain volume differences in 206 healthy elderly subjects scanned with MRI and genotyped as part of the Alzheimers Disease Neuroimaging Initiative. We found a pattern of systematic brain volume deficits in carriers of the obesity-associated risk allele versus noncarriers. Relative to structure volumes in the mean template, FTO risk allele carriers versus noncarriers had an average brain volume difference of ~8% in the frontal lobes and 12% in the occipital lobes—these regions also showed significant volume deficits in subjects with higher BMI. These brain differences were not attributable to differences in cholesterol levels, hypertension, or the volume of white matter hyperintensities; which were not detectably higher in FTO risk allele carriers versus noncarriers. These brain maps reveal that a commonly carried susceptibility allele for obesity is associated with structural brain atrophy, with implications for the health of the elderly.


NeuroImage | 2010

Genome-Wide Analysis Reveals Novel Genes Influencing Temporal Lobe Structure with Relevance to Neurodegeneration in Alzheimer’s Disease

Jason L. Stein; Xue Hua; Jonathan H. Morra; Suh Lee; Derrek P. Hibar; April J. Ho; Alex D. Leow; Arthur W. Toga; Jae Hoon Sul; Hyun Min Kang; Eleazar Eskin; Andrew J. Saykin; Li Shen; Tatiana Foroud; Nathan Pankratz; Matthew J. Huentelman; David Craig; Jill D. Gerber; April N. Allen; Jason J. Corneveaux; Dietrich A. Stephan; Jennifer A. Webster; Bryan M. DeChairo; Steven G. Potkin; Clifford R. Jack; Michael W. Weiner; Paul M. Thompson

In a genome-wide association study of structural brain degeneration, we mapped the 3D profile of temporal lobe volume differences in 742 brain MRI scans of Alzheimers disease patients, mildly impaired, and healthy elderly subjects. After searching 546,314 genomic markers, 2 single nucleotide polymorphisms (SNPs) were associated with bilateral temporal lobe volume (P<5 x 10(-7)). One SNP, rs10845840, is located in the GRIN2B gene which encodes the N-methyl-d-aspartate (NMDA) glutamate receptor NR2B subunit. This protein - involved in learning and memory, and excitotoxic cell death - has age-dependent prevalence in the synapse and is already a therapeutic target in Alzheimers disease. Risk alleles for lower temporal lobe volume at this SNP were significantly over-represented in AD and MCI subjects vs. controls (odds ratio=1.273; P=0.039) and were associated with mini-mental state exam scores (MMSE; t=-2.114; P=0.035) demonstrating a negative effect on global cognitive function. Voxelwise maps of genetic association of this SNP with regional brain volumes, revealed intense temporal lobe effects (FDR correction at q=0.05; critical P=0.0257). This study uses large-scale brain mapping for gene discovery with implications for Alzheimers disease.


BMC Genomics | 2012

Genome-wide association between DNA methylation and alternative splicing in an invertebrate

Kevin Flores; Florian Wolschin; Jason J. Corneveaux; April N. Allen; Matthew J. Huentelman; Gro V. Amdam

BackgroundGene bodies are the most evolutionarily conserved targets of DNA methylation in eukaryotes. However, the regulatory functions of gene body DNA methylation remain largely unknown. DNA methylation in insects appears to be primarily confined to exons. Two recent studies in Apis mellifera (honeybee) and Nasonia vitripennis (jewel wasp) analyzed transcription and DNA methylation data for one gene in each species to demonstrate that exon-specific DNA methylation may be associated with alternative splicing events. In this study we investigated the relationship between DNA methylation, alternative splicing, and cross-species gene conservation on a genome-wide scale using genome-wide transcription and DNA methylation data.ResultsWe generated RNA deep sequencing data (RNA-seq) to measure genome-wide mRNA expression at the exon- and gene-level. We produced a de novo transcriptome from this RNA-seq data and computationally predicted splice variants for the honeybee genome. We found that exons that are included in transcription are higher methylated than exons that are skipped during transcription. We detected enrichment for alternative splicing among methylated genes compared to unmethylated genes using fisher’s exact test. We performed a statistical analysis to reveal that the presence of DNA methylation or alternative splicing are both factors associated with a longer gene length and a greater number of exons in genes. In concordance with this observation, a conservation analysis using BLAST revealed that each of these factors is also associated with higher cross-species gene conservation.ConclusionsThis study constitutes the first genome-wide analysis exhibiting a positive relationship between exon-level DNA methylation and mRNA expression in the honeybee. Our finding that methylated genes are enriched for alternative splicing suggests that, in invertebrates, exon-level DNA methylation may play a role in the construction of splice variants by positively influencing exon inclusion during transcription. The results from our cross-species homology analysis suggest that DNA methylation and alternative splicing are genetic mechanisms whose utilization could contribute to a longer gene length and a slower rate of gene evolution.


JAMA Neurology | 2010

Hypometabolism in Alzheimer-Affected Brain Regions in Cognitively Healthy Latino Individuals Carrying the Apolipoprotein E ε4 Allele

Jessica B. Langbaum; Kewei Chen; Richard J. Caselli; Wendy Lee; Cole Reschke; Daniel Bandy; Gene E. Alexander; Christine M. Burns; Alfred W. Kaszniak; Stephanie A. Reeder; Jason J. Corneveaux; April N. Allen; Jeremy J. Pruzin; Matthew J. Huentelman; Adam S. Fleisher; Eric M. Reiman

OBJECTIVE To investigate with fluorodeoxyglucose positron emission tomography whether regional reductions in the cerebral metabolic rate for glucose (CMRgl) previously found in cognitively healthy late-middle-aged apolipoprotein E (APOE) epsilon4 carriers extend to members of the Latino Mexican American community. DESIGN Prospective cohort study. SETTING Banner Alzheimers Institute, Phoenix, Arizona. PATIENTS OR OTHER PARTICIPANTS Eleven APOE epsilon4 carriers and 16 noncarriers from Arizonas Latino community (mean [SD] age, 54.6 [6.4] years) matched for sex, mean age, and educational level and who were predominantly of self-designated Mexican origin. MAIN OUTCOME MEASURE A brain mapping algorithm was used to compare cross-sectional regional CMRgl in Latino APOE epsilon4 carriers vs noncarriers. RESULTS Participant groups had similar distributions for age, sex, education, family history of dementia, clinical ratings, and neuropsychological test scores. Latino APOE epsilon4 carriers had lower CMRgl than the noncarriers in the posterior cingulate, precuneus, and parietal regions previously found to be preferentially affected in patients with Alzheimer disease (AD) and cognitively healthy non-Latino APOE epsilon4 carriers. Additionally, the Latino APOE epsilon4 carriers had lower CMRgl in the middle and anterior cingulate cortex, hippocampus, and thalamus. CONCLUSIONS This study provides support for the relationship between APOE epsilon4 and risk of AD in Latino individuals. It illustrates the role of positron emission tomography as a presymptomatic endophenotype for the assessment of AD risk factors and supports the inclusion of Latino APOE epsilon4 carriers in proof-of-concept studies using fluorodeoxyglucose PET to evaluate promising presymptomatic treatments in cognitively healthy carriers of this common AD susceptibility gene.


PLOS ONE | 2014

Transcriptomic Analysis of Tail Regeneration in the Lizard Anolis carolinensis Reveals Activation of Conserved Vertebrate Developmental and Repair Mechanisms

Elizabeth D. Hutchins; Glenn J. Markov; Walter L. Eckalbar; Rajani M. George; Jesse M. King; Minami A. Tokuyama; Lauren A. Geiger; Nataliya Emmert; Michael J. Ammar; April N. Allen; Ashley L. Siniard; Jason J. Corneveaux; Rebecca E. Fisher; Juli Wade; Dale F. DeNardo; J. Alan Rawls; Matthew J. Huentelman; Jeanne Wilson-Rawls; Kenro Kusumi

Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis, which revealed 326 differentially expressed genes activating multiple developmental and repair mechanisms. Specifically, genes involved in wound response, hormonal regulation, musculoskeletal development, and the Wnt and MAPK/FGF pathways were differentially expressed along the regenerating tail axis. Furthermore, we identified 2 microRNA precursor families, 22 unclassified non-coding RNAs, and 3 novel protein-coding genes significantly enriched in the regenerating tail. However, high levels of progenitor/stem cell markers were not observed in any region of the regenerating tail. Furthermore, we observed multiple tissue-type specific clusters of proliferating cells along the regenerating tail, not localized to the tail tip. These findings predict a different mechanism of regeneration in the lizard than the blastema model described in the salamander and the zebrafish, which are anamniote vertebrates. Thus, lizard tail regrowth involves the activation of conserved developmental and wound response pathways, which are potential targets for regenerative medical therapies.


BMC Genomics | 2013

Genome reannotation of the lizard Anolis carolinensis based on 14 adult and embryonic deep transcriptomes

Walter L. Eckalbar; Elizabeth D. Hutchins; Glenn J. Markov; April N. Allen; Jason J. Corneveaux; Kerstin Lindblad-Toh; Federica Di Palma; Jessica Alföldi; Matthew J. Huentelman; Kenro Kusumi

BackgroundThe green anole lizard, Anolis carolinensis, is a key species for both laboratory and field-based studies of evolutionary genetics, development, neurobiology, physiology, behavior, and ecology. As the first non-avian reptilian genome sequenced, A. carolinesis is also a prime reptilian model for comparison with other vertebrate genomes. The public databases of Ensembl and NCBI have provided a first generation gene annotation of the anole genome that relies primarily on sequence conservation with related species. A second generation annotation based on tissue-specific transcriptomes would provide a valuable resource for molecular studies.ResultsHere we provide an annotation of the A. carolinensis genome based on de novo assembly of deep transcriptomes of 14 adult and embryonic tissues. This revised annotation describes 59,373 transcripts, compared to 16,533 and 18,939 currently for Ensembl and NCBI, and 22,962 predicted protein-coding genes. A key improvement in this revised annotation is coverage of untranslated region (UTR) sequences, with 79% and 59% of transcripts containing 5’ and 3’ UTRs, respectively. Gaps in genome sequence from the current A. carolinensis build (Anocar2.0) are highlighted by our identification of 16,542 unmapped transcripts, representing 6,695 orthologues, with less than 70% genomic coverage.ConclusionsIncorporation of tissue-specific transcriptome sequence into the A. carolinensis genome annotation has markedly improved its utility for comparative and functional studies. Increased UTR coverage allows for more accurate predicted protein sequence and regulatory analysis. This revised annotation also provides an atlas of gene expression specific to adult and embryonic tissues.


The Journal of Neuroscience | 2016

Mechanisms of CO2/H+ Sensitivity of Astrocytes

Egor Turovsky; Shefeeq M. Theparambil; Vitaliy Kasymov; Joachim W. Deitmer; Ana Gutierrez del Arroyo; Gareth L. Ackland; Jason J. Corneveaux; April N. Allen; Matthew J. Huentelman; Sergey Kasparov; Nephtali Marina; Alexander V. Gourine

Ventral regions of the medulla oblongata of the brainstem are populated by astrocytes sensitive to physiological changes in PCO2/[H+]. These astrocytes respond to decreases in pH with elevations in intracellular Ca2+ and facilitated exocytosis of ATP-containing vesicles. Released ATP propagates Ca2+ excitation among neighboring astrocytes and activates neurons of the brainstem respiratory network triggering adaptive increases in breathing. The mechanisms linking increases in extracellular and/or intracellular PCO2/[H+] with Ca2+ responses in chemosensitive astrocytes remain unknown. Fluorescent imaging of changes in [Na+]i and/or [Ca2+]i in individual astrocytes was performed in organotypic brainstem slice cultures and acute brainstem slices of adult rats. It was found that astroglial [Ca2+]i responses triggered by decreases in pH are preceded by Na+ entry, markedly reduced by inhibition of Na+/HCO3− cotransport (NBC) or Na+/Ca2+ exchange (NCX), and abolished in Na+-free medium or by combined NBC/NCX blockade. Acidification-induced [Ca2+]i responses were also dramatically reduced in brainstem astrocytes of mice deficient in the electrogenic Na+/HCO3− cotransporter NBCe1. Sensitivity of astrocytes to changes in pH was not affected by inhibition of Na+/H+ exchange or blockade of phospholipase C. These results suggest that in pH-sensitive astrocytes, acidification activates NBCe1, which brings Na+ inside the cell. Raising [Na+]i activates NCX to operate in a reverse mode, leading to Ca2+ entry followed by activation of downstream signaling pathways. Coupled NBC and NCX activities are, therefore, suggested to be responsible for functional CO2/H+ sensitivity of astrocytes that contribute to homeostatic regulation of brain parenchymal pH and control of breathing. SIGNIFICANCE STATEMENT Brainstem astrocytes detect physiological changes in pH, activate neurons of the neighboring respiratory network, and contribute to the development of adaptive respiratory responses to the increases in the level of blood and brain PCO2/[H+]. The mechanisms underlying astroglial pH sensitivity remained unknown and here we show that in brainstem astrocytes acidification activates Na+/HCO3− cotransport, which brings Na+ inside the cell. Raising [Na+]i activates the Na+/Ca2+ exchanger to operate in a reverse mode leading to Ca2+ entry. This identifies a plausible mechanism of functional CO2/H+ sensitivity of brainstem astrocytes, which play an important role in homeostatic regulation of brain pH and control of breathing.


Journal of Heredity | 2011

Identification of Risk Loci for Necrotizing Meningoencephalitis in Pug Dogs

Renee M. Barber; Scott J. Schatzberg; Jason J. Corneveaux; April N. Allen; Brian F. Porter; Jeremy J. Pruzin; Simon R. Platt; Marc Kent; Matthew J. Huentelman

Due to their unique population structure, purebred dogs have emerged as a key model for the study of complex genetic disorders. To evaluate the utility of a newly available high-density canine whole-genome array with >170,000 single nucleotide polymorphisms (SNPs), genome-wide association was performed on a small number of case and control dogs to determine disease susceptibility loci in canine necrotizing meningoencephalitis (NME), a disorder with known non-Mendelian inheritance that shares clinical similarities with atypical variants of multiple sclerosis in humans. Genotyping of 30 NME-affected Pug dogs and 68 healthy control Pugs identified 2 loci associated with NME, including a region within dog leukocyte antigen class II on chromosome 12 that remained significant after Bonferroni correction. Our results support the utility of this high-density SNP array, confirm that dogs are a powerful model for mapping complex genetic disorders and provide important preliminary data to support in depth genetic analysis of NME in numerous affected breeds.

Collaboration


Dive into the April N. Allen's collaboration.

Top Co-Authors

Avatar

Matthew J. Huentelman

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jason J. Corneveaux

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeremy J. Pruzin

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

David Craig

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

David A. Bennett

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jill D. Gerber

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Travis Dunckley

Translational Genomics Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge