Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where April N. Meyer is active.

Publication


Featured researches published by April N. Meyer.


Oncogene | 2000

Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4.

Kristen C. Hart; Scott C. Robertson; Martha Y Kanemitsu; April N. Meyer; John A. Tynan; Daniel J. Donoghue

The fibroblast growth factor receptor (FGFR) family members mediate a number of important cellular processes, and are mutated or overexpressed in several forms of human cancer. Mutation of Lys650→Glu in the activation loop of the FGFR3 kinase domain causes the lethal human skeletal disorder thanatophoric dysplasia type II (TDII) and is also found in patients with multiple myeloma, bladder and cervical carcinomas. This mutation leads to constitutive activation of FGFR3. To compare the signaling activity of FGFR family members, this activating mutation was generated in FGFR1, FGFR3, and FGFR4. We show that the kinase domains of FGFR1, FGFR3, and FGFR4 containing the activation loop mutation, when targeted to the plasma membrane by a myristylation signal, can transform NIH3T3 cells and induce neurite outgrowth in PC12 cells. Phosphorylation of Shp2, PLC-γ, and MAPK was also stimulated by all three ‘TDII-like’ FGFR derivatives. Additionally, activation of Stat1 and Stat3 was observed in cells expressing the activated FGFR derivatives. Finally, we demonstrate that FGFR1, FGFR3, and FGFR4 derivatives can stimulate PI-3 kinase activity. Our comparison of these activated receptor derivatives reveals a significant overlap in the panel of effector proteins used to mediate downstream signals. This also represents the first demonstration that activation of FGFR4, in addition to FGFR1 and FGFR3, can induce cellular transformation. Moreover, our results suggest that Stat activation by FGFRs is important in their ability to act as oncogenes.


EMBO Reports | 2002

Initial activation of cyclin-B1-cdc2 kinase requires phosphorylation of cyclin B1

Marion Peter; Christian J. Le Peuch; Jean-Claude Labbé; April N. Meyer; Daniel J. Donoghue; Marcel Dorée

At the G2/M transition of the cell cycle, the cdc25c phosphatase dephosphorylates inhibitory residues of cdc2, and cyclin‐B–cdc2 kinase (MPF) is activated. Phosphorylation of cyclin B1 induces its nuclear accumulation, and, since cdc25c is also believed to accumulate and activate shortly before G2/M in the nucleus, it has been proposed that this induces cyclin‐B1–cdc2 kinase activation. We demonstrate that cyclin B1 phosphorylation has another essential function in vivo: it is required for cdc25c and MPF activation, which does not require nuclear accumulation of cyclin B1, and occurs in the cytoplasm.


PLOS ONE | 2010

The Receptor Tyrosine Kinase FGFR4 Negatively Regulates NF-kappaB Signaling

Kristine A. Drafahl; Christopher W. McAndrew; April N. Meyer; Martin Haas; Daniel J. Donoghue

Background NFκB signaling is of paramount importance in the regulation of apoptosis, proliferation, and inflammatory responses during human development and homeostasis, as well as in many human cancers. Receptor Tyrosine Kinases (RTKs), including the Fibroblast Growth Factor Receptors (FGFRs) are also important in development and disease. However, a direct relationship between growth factor signaling pathways and NFκB activation has not been previously described, although FGFs have been known to antagonize TNFα-induced apoptosis. Methodology/Principal Findings Here, we demonstrate an interaction between FGFR4 and IKKβ (Inhibitor of NFκB Kinase β subunit), an essential component in the NFκB pathway. This novel interaction was identified utilizing a yeast two-hybrid screen [1] and confirmed by coimmunoprecipitation and mass spectrometry analysis. We demonstrate tyrosine phosphorylation of IKKβ in the presence of activated FGFR4, but not kinase-dead FGFR4. Following stimulation by TNFα (Tumor Necrosis Factor α) to activate NFκB pathways, FGFR4 activation results in significant inhibition of NFκB signaling as measured by decreased nuclear NFκB localization, by reduced NFκB transcriptional activation in electophoretic mobility shift assays, and by inhibition of IKKβ kinase activity towards the substrate GST-IκBα in in vitro assays. FGF19 stimulation of endogenous FGFR4 in TNFα-treated DU145 prostate cancer cells also leads to a decrease in IKKβ activity, concomitant reduction in NFκB nuclear localization, and reduced apoptosis. Microarray analysis demonstrates that FGF19 + TNFα treatment of DU145 cells, in comparison with TNFα alone, favors proliferative genes while downregulating genes involved in apoptotic responses and NFκB signaling. Conclusions/Significance These results identify a compelling link between FGFR4 signaling and the NFκB pathway, and reveal that FGFR4 activation leads to a negative effect on NFκB signaling including an inhibitory effect on proapoptotic signaling. We anticipate that this interaction between an RTK and a component of NFκB signaling will not be limited to FGFR4 alone.


Journal of Biological Chemistry | 2004

The Cytoplasmic Tyrosine Kinase Pyk2 as a Novel Effector of Fibroblast Growth Factor Receptor 3 Activation

April N. Meyer; Randy F. Gastwirt; David D. Schlaepfer; Daniel J. Donoghue

Activating mutations within fibroblast growth factor receptor 3 (FGFR3), a receptor tyrosine kinase, are responsible for human skeletal dysplasias including achondroplasia and the neonatal lethal syndromes thanatophoric dysplasia types I and II. Several of these same FGFR3 mutations have also been identified somatically in human cancers, including multiple myeloma, bladder carcinoma, and cervical cancer. The molecular pathways exploited by FGFR3 to stimulate abnormal proliferation during neoplasia are unclear. The nonreceptor protein-tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2) has been shown previously to regulate apoptosis in multiple myeloma cells. Here we describe a novel interaction between FGFR3 and Pyk2, mediated by the juxtamembrane domain of FGFR3 and the kinase domain of Pyk2. Within the FGFR family, Pyk2 also interacted significantly with FGFR2. Overexpression of Pyk2 alone led to its spontaneous activation and tyrosine phosphorylation, resulting in activation of Stat5B, indicated by the reporter GFP-Stat5B. These effects were completely dependent upon Tyr402, the autophosphorylation site of Pyk2, which allows recruitment of Src family members for further activating phosphorylations at other sites on Pyk2. In the presence of activated FGFR3, the activation of Pyk2 itself became independent of Tyr402, indicating that FGFR3 activation circumvents the requirement for c-Src recruitment at Tyr402 of Pyk2. We also examined the role of the tyrosine phosphatase Shp2 in antagonizing Pyk2 activation. Taken together, these results suggest that signaling pathways regulated by FGFR3 may converge with Pyk2-dependent pathways to provide maximal activation of Stat5B.


Cancer Research | 2008

Nordihydroguaiaretic Acid Inhibits an Activated Fibroblast Growth Factor Receptor 3 Mutant and Blocks Downstream Signaling in Multiple Myeloma Cells

April N. Meyer; Christopher W. McAndrew; Daniel J. Donoghue

Activating mutations within fibroblast growth factor receptor 3 (FGFR3), a receptor tyrosine kinase, are responsible for human skeletal dysplasias including achondroplasia and the neonatal lethal syndromes, Thanatophoric Dysplasia (TD) type I and II. Several of these same FGFR3 mutations have also been identified somatically in human cancers, including multiple myeloma, bladder carcinoma, and cervical cancer. Based on reports that strongly activated mutants of FGFR3 such as the TDII (K650E) mutant signal preferentially from within the secretory pathway, the inhibitory properties of nordihydroguaiartic acid (NDGA), which blocks protein transport through the Golgi, were investigated. NDGA was able to inhibit FGFR3 autophosphorylation both in vitro and in vivo. In addition, signaling molecules downstream of FGFR3 activation such as signal transducers and activators of transcription (STAT)1, STAT3, and mitogen-activated protein kinase (MAPK) were inhibited by NDGA treatment. Using HEK293 cells expressing activated FGFR3-TDII, together with several multiple myeloma cell lines expressing activated forms of FGFR3, NDGA generally resulted in a decrease in MAPK activation by 1 hour, and resulted in increased apoptosis over 24 hours. The effects of NDGA on activated FGFR3 derivatives targeted either to the plasma membrane or the cytoplasm were also examined. These results suggest that inhibitory small molecules such as NDGA that target a specific subcellular compartment may be beneficial in the inhibition of activated receptors such as FGFR3 that signal from the same compartment.


Cytokine & Growth Factor Reviews | 2015

Functions of Fibroblast Growth Factor Receptors in cancer defined by novel translocations and mutations

Leandro H. Gallo; Katelyn N. Nelson; April N. Meyer; Daniel J. Donoghue

The four receptor tyrosine kinases (RTKs) within the family of Fibroblast Growth Factor Receptors (FGFRs) are critical for normal development but also play an enormous role in oncogenesis. Mutations and/or abnormal expression often lead to constitutive dimerization and kinase activation of FGFRs, and represent the primary mechanism for aberrant signaling. Sequencing of human tumors has revealed a plethora of somatic mutations in FGFRs that are frequently identical to germline mutations in developmental syndromes, and has also identified novel FGFR fusion proteins arising from chromosomal rearrangements that contribute to malignancy. This review details approximately 200 specific point mutations in FGFRs and 40 different fusion proteins created by translocations involving FGFRs that have been identified in human cancer. This review discusses the effects of these genetic alterations on downstream signaling cascades, and the challenge of drug resistance in cancer treatment with antagonists of FGFRs.


Cell Cycle | 2007

Spy1 enhances phosphorylation and degradation of the cell cycle inhibitor p27.

Christopher W. McAndrew; Randy F. Gastwirt; April N. Meyer; Lisa A. Porter; Daniel J. Donoghue

The cyclin dependent kinase inhibitor (CKI) p27Kip1 binds to cyclin E/CDK2 complexes and prevents premature S-phase entry. During late G1 and throughout S phase, p27 phosphorylation at T187 leads to its subsequent degradation, which relieves CDK2 inhibition to promote cell cycle progression. However, critical events that trigger CDK2 complexes to phosphorylate p27 remain unclear. Utilizing recombinant proteins, we demonstrate that human Speedy (Spy1) activates CDK2 to phosphorylate p27 at T187 in vitro. Addition of Spy1 or Spy1/CDK2 to a preformed, inhibited cyclin E/CDK2/p27 complex also promoted this phosphorylation. Furthermore, Spy1 protected cyclin E/CDK2 from p27 inhibition toward histone H1, in vitro. Inducible Spy1 expression in U2OS cells reduced levels of endogenous p27 and exogenous p27WT, but not a p27T187A mutant. Additionally, Spy1 expression in synchronized HeLa cells enhanced T187 phosphorylation and degradation of endogenous p27 in late G1 and throughout S phase. Our studies provide evidence that Spy1 expression enhances CDK2-dependent p27 degradation during late G1 and throughout S phase.


Molecular Cancer Research | 2016

Oncogenic Gene Fusion FGFR3-TACC3 Is Regulated by Tyrosine Phosphorylation

Katelyn N. Nelson; April N. Meyer; Asma Siari; Alexandre Rosa Campos; Khatereh Motamedchaboki; Daniel J. Donoghue

Fibroblast growth factor receptors (FGFR) are critical for cell proliferation and differentiation. Mutation and/or translocation of FGFRs lead to aberrant signaling that often results in developmental syndromes or cancer growth. As sequencing of human tumors becomes more frequent, so does the detection of FGFR translocations and fusion proteins. The research conducted in this article examines a frequently identified fusion protein between FGFR3 and transforming acidic coiled-coil containing protein 3 (TACC3), frequently identified in glioblastoma, lung cancer, bladder cancer, oral cancer, head and neck squamous cell carcinoma, gallbladder cancer, and cervical cancer. Using titanium dioxide–based phosphopeptide enrichment (TiO2)-liquid chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS), it was demonstrated that the fused coiled-coil TACC3 domain results in constitutive phosphorylation of key activating FGFR3 tyrosine residues. The presence of the TACC coiled-coil domain leads to increased and altered levels of FGFR3 activation, fusion protein phosphorylation, MAPK pathway activation, nuclear localization, cellular transformation, and IL3-independent proliferation. Introduction of K508R FGFR3 kinase-dead mutation abrogates these effects, except for nuclear localization which is due solely to the TACC3 domain. Implications: These results demonstrate that FGFR3 kinase activity is essential for the oncogenic effects of the FGFR3-TACC3 fusion protein and could serve as a therapeutic target, but that phosphorylated tyrosine residues within the TACC3-derived portion are not critical for activity. Mol Cancer Res; 14(5); 458–69. ©2016 AACR.


PLOS ONE | 2014

Fibroblast Growth Factor Receptor 3 Interacts with and Activates TGFβ-Activated Kinase 1 Tyrosine Phosphorylation and NFκB Signaling in Multiple Myeloma and Bladder Cancer

Lisa Salazar; Tamara Kashiwada; Pavel Krejčí; April N. Meyer; Malcolm Casale; Matthew Hallowell; William R. Wilcox; Daniel J. Donoghue; Leslie M. Thompson

Cancer is a major public health problem worldwide. In the United States alone, 1 in 4 deaths is due to cancer and for 2013 a total of 1,660,290 new cancer cases and 580,350 cancer-related deaths are projected. Comprehensive profiling of multiple cancer genomes has revealed a highly complex genetic landscape in which a large number of altered genes, varying from tumor to tumor, impact core biological pathways and processes. This has implications for therapeutic targeting of signaling networks in the development of treatments for specific cancers. The NFκB transcription factor is constitutively active in a number of hematologic and solid tumors, and many signaling pathways implicated in cancer are likely connected to NFκB activation. A critical mediator of NFκB activity is TGFβ-activated kinase 1 (TAK1). Here, we identify TAK1 as a novel interacting protein and target of fibroblast growth factor receptor 3 (FGFR3) tyrosine kinase activity. We further demonstrate that activating mutations in FGFR3 associated with both multiple myeloma and bladder cancer can modulate expression of genes that regulate NFκB signaling, and promote both NFκB transcriptional activity and cell adhesion in a manner dependent on TAK1 expression in both cancer cell types. Our findings suggest TAK1 as a potential therapeutic target for FGFR3-associated cancers, and other malignancies in which TAK1 contributes to constitutive NFκB activation.


Cell Cycle | 2014

Novel Lys63-linked ubiquitination of IKKβ induces STAT3 signaling

Leandro H. Gallo; April N. Meyer; Khatereh Motamedchaboki; Katelyn N. Nelson; Martin Haas; Daniel J. Donoghue

NFκB signaling plays a significant role in human disease, including breast and ovarian carcinoma, insulin resistance, embryonic lethality and liver degeneration, rheumatoid arthritis, aging and Multiple Myeloma (MM). Inhibitor of κB (IκB) kinase β (IKKβ) regulates canonical Nuclear Factor κB (NFκB) signaling in response to inflammation and cellular stresses. NFκB activation requires Lys63-linked (K63-linked) ubiquitination of upstream proteins such as NEMO or TAK1, forming molecular complexes with membrane-bound receptors. We demonstrate that IKKβ itself undergoes K63-linked ubiquitination. Mutations in IKKβ at Lys171, identified in Multiple Myeloma and other cancers, lead to a dramatic increase in kinase activation and K63-linked ubiquitination. These mutations also result in persistent activation of STAT3 signaling. Liquid chromatography (LC)-high mass accuracy tandem mass spectrometry (MS/MS) analysis identified Lys147, Lys418, Lys555 and Lys703 as predominant ubiquitination sites in IKKβ. Specific inhibition of the UBC13-UEV1A complex responsible for K63-linked ubiquitination establishes Lys147 as the predominant site of K63-ubiquitin conjugation and responsible for STAT3 activation. Thus, IKKβ activation leads to ubiquitination within the kinase domain and assemblage of a K63-ubiquitin conjugated signaling platform. These results are discussed with respect to the importance of upregulated NFκB signaling known to occur frequently in MM and other cancers.

Collaboration


Dive into the April N. Meyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Haas

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asma Siari

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar

John A. Tynan

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge