Arabinda Ghosh
Indian Institute of Technology Guwahati
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arabinda Ghosh.
PLOS ONE | 2013
Dean Spears; Arabinda Ghosh; Oliver Cumming
Poor sanitation remains a major public health concern linked to several important health outcomes; emerging evidence indicates a link to childhood stunting. In India over half of the population defecates in the open; the prevalence of stunting remains very high. Recently published data on levels of stunting in 112 districts of India provide an opportunity to explore the relationship between levels of open defecation and stunting within this population. We conducted an ecological regression analysis to assess the association between the prevalence of open defecation and stunting after adjustment for potential confounding factors. Data from the 2011 HUNGaMA survey was used for the outcome of interest, stunting; data from the 2011 Indian Census for the same districts was used for the exposure of interest, open defecation. After adjustment for various potential confounding factors – including socio-economic status, maternal education and calorie availability – a 10 percent increase in open defecation was associated with a 0.7 percentage point increase in both stunting and severe stunting. Differences in open defecation can statistically account for 35 to 55 percent of the average difference in stunting between districts identified as low-performing and high-performing in the HUNGaMA data. In addition, using a Monte Carlo simulation, we explored the effect on statistical power of the common practice of dichotomizing continuous height data into binary stunting indicators. Our simulation showed that dichotomization of height sacrifices statistical power, suggesting that our estimate of the association between open defecation and stunting may be a lower bound. Whilst our analysis is ecological and therefore vulnerable to residual confounding, these findings use the most recently collected large-scale data from India to add to a growing body of suggestive evidence for an effect of poor sanitation on human growth. New intervention studies, currently underway, may shed more light on this important issue.
PLOS ONE | 2013
Shadab Ahmed; Ana S. Luís; Joana L. A. Brás; Arabinda Ghosh; Saurabh Gautam; Munishwar N. Gupta; Carlos M. G. A. Fontes; Arun Goyal
The study describes a comparative analysis of biochemical, structural and functional properties of two recombinant derivatives from Clostridium thermocellum ATCC 27405 belonging to family 43 glycoside hydrolase. The family 43 glycoside hydrolase encoding α-L-arabinofuranosidase (Ct43Araf) displayed an N-terminal catalytic module CtGH43 (903 bp) followed by two carbohydrate binding modules CtCBM6A (405 bp) and CtCBM6B (402 bp) towards the C-terminal. Ct43Araf and its truncated derivative CtGH43 were cloned in pET-vectors, expressed in Escherichia coli and functionally characterized. The recombinant proteins displayed molecular sizes of 63 kDa (Ct43Araf) and 34 kDa (CtGH43) on SDS-PAGE analysis. Ct43Araf and CtGH43 showed optimal enzyme activities at pH 5.7 and 5.4 and the optimal temperature for both was 50°C. Ct43Araf and CtGH43 showed maximum activity with rye arabinoxylan 4.7 Umg−1 and 5.0 Umg−1, respectively, which increased by more than 2-fold in presence of Ca2+ and Mg2+ salts. This indicated that the presence of CBMs (CtCBM6A and CtCBM6B) did not have any effect on the enzyme activity. The thin layer chromatography and high pressure anion exchange chromatography analysis of Ct43Araf hydrolysed arabinoxylans (rye and wheat) and oat spelt xylan confirmed the release of L-arabinose. This is the first report of α-L-arabinofuranosidase from C. thermocellum having the capacity to degrade both p-nitrophenol-α-L-arabinofuranoside and p-nitrophenol-α-L-arabinopyranoside. The protein melting curves of Ct43Araf and CtGH43 demonstrated that CtGH43 and CBMs melt independently. The presence of Ca2+ ions imparted thermal stability to both the enzymes. The circular dichroism analysis of CtGH43 showed 48% β-sheets, 49% random coils but only 3% α-helices.
Journal of Agricultural and Food Chemistry | 2013
Arabinda Ghosh; Ana S. Luís; Joana L. A. Brás; Carlos M. G. A. Fontes; Arun Goyal
Functional attributes of a thermostable β-(1→4)-mannanase were investigated from Clostridium thermocellum ATCC 27405. Its sequence comparison the exhibited highest similarity with Man26B of C. thermocellum F1. The full length CtManf and truncated CtManT were cloned in the pET28a(+) vector and expressed in E. coli BL21(DE3) cells, exhibiting 53 kDa and 38 kDa proteins, respectively. On the basis of the substrate specificity and hydrolyzed product profile, CtManf and CtManT were classified as β-(1→4)-mannanase. A 1.5 fold higher activity of both enzymes was observed by Ca(2+) and Mg(2+) salts. Plausible mannanase activity of CtManf was revealed by the classical hydrolysis pattern of carob galactomannan and the release of manno-oligosaccharides. Notably highest protein concentrations of CtManf and CtManT were achieved in tryptone yeast extract (TY) medium, as compared with other defined media. Both CtManf and CtManT displayed stability at 60 and 50 °C, respectively, and Ca(2+) ions imparted higher thermostability, resisting their melting up to 100 °C.
BioMed Research International | 2013
Saprativ P. Das; Arabinda Ghosh; Ashutosh Gupta; Arun Goyal; Debasish Das
Simultaneous saccharification and fermentation (SSF) studies of steam exploded and alkali pretreated different leafy biomass were accomplished by recombinant Clostridium thermocellum hydrolytic enzymes and fermentative microbes for bioethanol production. The recombinant C. thermocellum GH5 cellulase and GH43 hemicellulase genes expressed in Escherichia coli cells were grown in repetitive batch mode, with the aim of enhancing the cell biomass production and enzyme activity. In batch mode, the cell biomass (A 600 nm) of E. coli cells and enzyme activities of GH5 cellulase and GH43 hemicellulase were 1.4 and 1.6 with 2.8 and 2.2 U·mg−1, which were augmented to 2.8 and 2.9 with 5.6 and 3.8 U·mg−1 in repetitive batch mode, respectively. Steam exploded wild grass (Achnatherum hymenoides) provided the best ethanol titres as compared to other biomasses. Mixed enzyme (GH5 cellulase, GH43 hemicellulase) mixed culture (Saccharomyces cerevisiae, Candida shehatae) system gave 2-fold higher ethanol titre than single enzyme (GH5 cellulase) single culture (Saccharomyces cerevisiae) system employing 1% (w/v) pretreated substrate. 5% (w/v) substrate gave 11.2 g·L−1 of ethanol at shake flask level which on scaling up to 2 L bioreactor resulted in 23 g·L−1 ethanol. 91.6% (v/v) ethanol was recovered by rotary evaporator with 21.2% purification efficiency.
Bioresource Technology | 2014
Ashutosh Gupta; Saprativ P. Das; Arabinda Ghosh; Rajan Choudhary; Debasish Das; Arun Goyal
Bioethanol was produced from poplar leafy biomass rich in hemicelluloses content involving recombinant Clostridium thermocellum hemicellulases and pentose sugar utilizing Candida shehatae. FT-IR analysis revealed effective AFEX pretreatment of poplar leaves. Repetitive batch strategy yielded ∼1.5-fold rise in cell biomass and specific activity of both, acetylxylanesterase (Axe) and GH43 hemicellulase. TLC and HPAEC exhibited xylose and arabinose release from hydrolyzed biomass. SSF trial with 1% (wv(-1)) pretreated poplar and mixed enzymes showed ∼1.5-fold higher ethanol titre as compared with SHF. The shake flask SSF with 5% (wv(-1)) pretreated poplar furnished 4.56 and 5.43gL(-1) ethanol with Axe and mixed enzymes, respectively. Whereas, bioreactor scale-up exhibited ∼1.25-fold increase in ethanol titres (5.68, 6.75gL(-1)) as compared with shake flask with an yield of 0.295 (gg(-1)) and 0.351 (gg(-1)), respectively with Axe and mixed enzymes.
PLOS ONE | 2013
Arabinda Ghosh; Ana S. Luís; Joana L. A. Brás; Neeta Pathaw; Nikhil K. Chrungoo; Carlos M. G. A. Fontes; Arun Goyal
This study investigated the role of CBM35 from Clostridium thermocellum (CtCBM35) in polysaccharide recognition. CtCBM35 was cloned into pET28a (+) vector with an engineered His6 tag and expressed in Escherichia coli BL21 (DE3) cells. A homogenous 15 kDa protein was purified by immobilized metal ion chromatography (IMAC). Ligand binding analysis of CtCBM35 was carried out by affinity electrophoresis using various soluble ligands. CtCBM35 showed a manno-configured ligand specific binding displaying significant association with konjac glucomannan (K a = 14.3×104 M−1), carob galactomannan (K a = 12.4×104 M−1) and negligible association (K a = 12 µM−1) with insoluble mannan. Binding of CtCBM35 with polysaccharides which was calcium dependent exhibited two fold higher association in presence of 10 mM Ca2+ ion with konjac glucomannan (K a = 41×104 M−1) and carob galactomannan (K a = 30×104 M−1). The polysaccharide binding was further investigated by fluorescence spectrophotometric studies. On binding with carob galactomannan and konjac glucomannan the conformation of CtCBM35 changed significantly with regular 21 nm peak shifts towards lower quantum yield. The degree of association (K a) with konjac glucomannan and carob galactomannan, 14.3×104 M−1 and 11.4×104 M−1, respectively, corroborated the findings from affinity electrophoresis. The association of CtCBM35with konjac glucomannan led to higher free energy of binding (ΔG) −25 kJ mole−1 as compared to carob galactomannan (ΔG) −22 kJ mole−1. On binding CtCBM35 with konjac glucomannan and carob galactomannan the hydrodynamic radius (RH) as analysed by dynamic light scattering (DLS) study, increased to 8 nm and 6 nm, respectively, from 4.25 nm in absence of ligand. The presence of 10 mM Ca2+ ions imparted stiffer orientation of CtCBM35 particles with increased RH of 4.52 nm. Due to such stiffer orientation CtCBM35 became more thermostable and its melting temperature was shifted to 70°C from initial 50°C.
Bioengineered bugs | 2015
Gaurav Chhetri; Arabinda Ghosh; Ramesh Chinta; Sohail Akhtar; Timir Tripathi
We report the molecular cloning, expression, and single-step homogeneous purification of RNA polymerase II subunit RPB5 from Saccharomyces cerevisiae. RPB5 is a 210 amino acid nuclear protein that functions as the fifth largest subunit of polymerase II and plays a central role in transcription. The gene that codes for RPB5 was generated by amplification by polymerase chain reaction. It was then inserted in the expression vector pET28a(+) under the transcriptional control of the bacteriophage T7 promoter and lac operator. BL21(DE3) Escherichia coli strain transformed with the rpb5 expression vector pET28a(+)-rpb5 accumulates large amounts of a soluble protein of about 30 kDa (25 kDa plus 5 kDa double His6-Tag at N and C-terminal). The protein was purified to homogeneity using immobilized metal affinity chromatography. RPB5 recombinant protein was further confirmed by immunoblotting with anti-His antibody. In this study, the expression and purification procedures have provided a simple and efficient method to obtain pure RPB5 in large quantities. This will provide an opportunity to study the role of S. cerevisiae RPB5 in gene expression and transcription regulation. Furthermore, it can provide additional knowledge of the interaction partners of RPB5 during various steps of transcription and gene expression.
Sustainable Chemical Processes | 2013
Saprativ P. Das; Deepmoni Deka; Arabinda Ghosh; Debasish Das; Mohammad Jawed; Arun Goyal
BackgroundLignocellulose degrading fungal enzymes have been in use at industrial level for more than three decades. However, the main drawback is the high cost of the commercially available Trichoderma reesei cellulolytic enzymes.ResultsThe hydrolytic performance of a novel Clostridium thermocellum cellulolytic recombinant cellulase expressed in Escherichia coli cells was compared with the naturally isolated cellulases in different modes of fermentation trials using steam explosion pretreated thatch grass and Zymomonas mobilis. Fourier transform infrared (FT-IR) spectroscopic analysis confirmed the efficiency of steam explosion pretreatment in significant release of free glucose moiety from complex lignocellulosic thatch grass. The recombinant GH5 cellulase with 1% (w v-1) substrate and Z. mobilis in shake flask separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) trials demonstrated highest ethanol titre (0.99 g L-1, 1.2 g L-1) as compared to Bacillus subtilis (0.51 g L-1, 0.72 g L-1) and Trichoderma reesei (0.67 g L-1, 0.94 g L-1). A 5% (w v-1) substrate with recombinant enzyme in shake flask SSF resulted in a 7 fold increment of ethanol titre (8.8 g L-1). The subsequent scale up in a 2 L bioreactor with 1 L working volume yielded 16.13 g L-1 ethanol titre implying a 2 fold upturn. The rotary evaporator based product recovery from bioreactor contributed 94.4 (%, v v-1) pure ethanol with purification process efficiency of 22.2%.ConclusionsThe saccharification of steam exploded thatch grass (Hyparrhenia rufa) by recombinant cellulase (GH5) along with Z. mobilis in bioethanol production was studied for the first time. The effective pretreatment released substantial hexose sugars from cellulose as confirmed by FT-IR studies. In contrast to two modes of fermentation, SSF processes utilizing recombinant C. thermocellum enzymes have the capability of yielding a value-added product, bioethanol with the curtailment of the production costs in industry.
Biochemistry | 2014
Arabinda Ghosh; Anil Verma; Saurabh Gautam; Munishwar N. Gupta; Arun Goyal
Functional attributes of recombinant CtCBM35 (family 35 carbohydrate binding module) of β-mannanase of family 26 Glycoside Hydrolase from Clostridium thermocellum were deduced by biochemical and in silico approaches. Ligand-binding analysis of expressed CtCBM35 analyzed by affinity-gel electrophoresis and fluorescence spectroscopy exhibited association constants Ka ∼ 1.2·105 and 3.0·105 M−1 with locust bean galactomannan and mannotriose, respectively. However, CtCBM35 showed low ligand-binding affinity with insoluble ivory nut mannan with Ka of 5.0·10−5 M−1. Unfolding transition analysis by fluorescence spectroscopy explained the conformational changes of CtCBM35 in the presence of guanidine hydrochloride (5 M) and urea (6.25 M). This explained that CtCBM35 has good conformational stability and requires higher free energy of denaturation to invoke unfolding. The three-dimensional (3-D) model of CtCBM35 from C. thermocellum generated by Modeller9v8 displayed predominance of β-sheets arranged as β-jelly-roll fold. The secondary structure of CtCBM35 by PredictProtein showed the presence of two α-helices (3%), 12 β-sheets (45%), and 15 random coils (52%). Secondary structural element analysis of cloned, expressed, and purified recombinant CtCBM35 by circular dichroism also corroborated the in silico predicted secondary structure. Multiple sequence alignment of CtCBM35 showed conserved residues (Tyr123, Gly124, and Phe125), which are commonly observed in mannan specific CBMs. Docking analysis of CtCBM35 with manno-oligosaccharide displayed the involvement of Tyr26, Gln29, Asn43, Trp66, Tyr68, Leu69, Arg76, and Leu127 residues, making polar contact with the ligand molecules. Ligand docking analysis of CtCBM35 exhibiting higher binding affinity with mannotriose and galactomannan (Man-Gal-Man moiety) substantiated the affinity binding and fluorescence results, displaying similar values of Ka.
Biologia | 2014
Arabinda Ghosh; Anil Verma; Ana S. Luís; Joana L. A. Brás; Carlos Mendes Fontes; Arun Goyal
The three-dimensional model of the CtCBM35 (Cthe 2811), i.e. the family 35 carbohydrate binding module (CBM) from the Clostridium thermocellum family 26 glycoside hydrolase (GH) β-mannanase, generated by Modeller9v8 displayed predominance of β-sheets arranged as β-sandwich fold. Multiple sequence alignment of CtCBM35 with other CBM35s showed a conserved signature sequence motif Trp-Gly-Tyr, which is probably a specific determinant for mannan binding. Cloned CtCBM35 from Clostridium thermocellum ATCC 27405 was a homogenous, soluble 16 kDa protein. Ligand binding analysis of CtCBM35 by affinity electrophoresis displayed higher binding affinity against konjac glucomannan (Ka = 2.5 × 105 M−1) than carob galactomannan (Ka = 1.4 × 105 M−1). The presence of Ca2+ ions imparted slightly higher binding affinity of CtCBM35 against carob galactomannan and konjac glucomannan than without Ca2+ ion additive. However, CtCBM35 exhibited a low ligand-binding affinity Ka = 2.5 × 10−5 M−1 with insoluble ivory nut mannan. Ligand binding study by fluorescence spectroscopy showed Ka against konjac glucomannan and carob galactomannan, 2.4 × 105 M−1 and 1.44 × 105 M−1, and ΔG of binding −27.0 and −25.0 kJ/mol, respectively, substantiating the findings of affinity electrophoresis. Ca2+ ions escalated the thermostability of CtCBM35 and its melting temperature was shifted to 70°C from initial 55°C. Therefore thermostable CtCBM35 targets more β-(1,4)-manno-configured ligands from plant cell wall hemicellulosic reservoir. Thus a non-catalytic CtCBM35 of multienzyme cellulosomal enzymes may gain interest in the biofuel and food industry in the form of released sugars by targeting plant cell wall polysaccharides.