Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aram Amassian is active.

Publication


Featured researches published by Aram Amassian.


Nature Materials | 2011

Colloidal-quantum-dot photovoltaics using atomic-ligand passivation

Jiang Tang; Kyle W. Kemp; Sjoerd Hoogland; Kwangseob Jeong; Huan Liu; Larissa Levina; Melissa Furukawa; Xihua Wang; Ratan Debnath; Dong Kyu Cha; Kang Wei Chou; Armin Fischer; Aram Amassian; John B. Asbury; Edward H. Sargent

Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication.


Nature Nanotechnology | 2012

Hybrid passivated colloidal quantum dot solids

Alexander H. Ip; Susanna M. Thon; Sjoerd Hoogland; Oleksandr Voznyy; David Zhitomirsky; Ratan Debnath; Larissa Levina; Lisa R. Rollny; Graham H. Carey; Armin Fischer; Kyle W. Kemp; Illan J. Kramer; Zhijun Ning; André J. Labelle; Kang Wei Chou; Aram Amassian; Edward H. Sargent

Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.


Nature Materials | 2014

Efficient charge generation by relaxed charge-transfer states at organic interfaces

Koen Vandewal; Steve Albrecht; Eric T. Hoke; Kenneth R. Graham; Johannes Widmer; Jessica D. Douglas; Marcel Schubert; William R. Mateker; Jason T. Bloking; George F. Burkhard; Alan Sellinger; Jean M. J. Fréchet; Aram Amassian; Moritz Riede; Michael D. McGehee; Dieter Neher; Alberto Salleo

Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy.


Nature Materials | 2014

Air-stable n-type colloidal quantum dot solids.

Zhijun Ning; Oleksandr Voznyy; Jun Pan; Sjoerd Hoogland; Valerio Adinolfi; Jixian Xu; Min Li; Ahmad R. Kirmani; Jon-Paul Sun; James C. Minor; Kyle W. Kemp; Haopeng Dong; Lisa R. Rollny; André J. Labelle; Graham H. Carey; Brandon R. Sutherland; Ian G. Hill; Aram Amassian; Huan Liu; Jiang Tang; Osman M. Bakr; Edward H. Sargent

Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials.


Nature Materials | 2017

Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells

Derya Baran; Raja Shahid Ashraf; David Hanifi; Maged Abdelsamie; Nicola Gasparini; Jason A. Röhr; Sarah Holliday; Andrew Wadsworth; Sarah Lockett; Marios Neophytou; Christopher J.M. Emmott; Jenny Nelson; Christoph J. Brabec; Aram Amassian; Alberto Salleo; Thomas Kirchartz; James R. Durrant; Iain McCulloch

Technological deployment of organic photovoltaic modules requires improvements in device light-conversion efficiency and stability while keeping material costs low. Here we demonstrate highly efficient and stable solar cells using a ternary approach, wherein two non-fullerene acceptors are combined with both a scalable and affordable donor polymer, poly(3-hexylthiophene) (P3HT), and a high-efficiency, low-bandgap polymer in a single-layer bulk-heterojunction device. The addition of a strongly absorbing small molecule acceptor into a P3HT-based non-fullerene blend increases the device efficiency up to 7.7 ± 0.1% without any solvent additives. The improvement is assigned to changes in microstructure that reduce charge recombination and increase the photovoltage, and to improved light harvesting across the visible region. The stability of P3HT-based devices in ambient conditions is also significantly improved relative to polymer:fullerene devices. Combined with a low-bandgap donor polymer (PBDTTT-EFT, also known as PCE10), the two mixed acceptors also lead to solar cells with 11.0 ± 0.4% efficiency and a high open-circuit voltage of 1.03 ± 0.01 V.


Journal of the American Chemical Society | 2012

Diketopyrrolopyrrole-Diketopyrrolopyrrole-Based Conjugated Copolymer for High-Mobility Organic Field-Effect Transistors

Catherine Kanimozhi; Nir Yaacobi-Gross; Kang Wei Chou; Aram Amassian; Thomas D. Anthopoulos; Satish Patil

In this communication, we report the synthesis of a novel diketopyrrolopyrrole-diketopyrrolopyrrole (DPP-DPP)-based conjugated copolymer and its application in high-mobility organic field-effect transistors. Copolymerization of DPP with DPP yields a copolymer with exceptional properties such as extended absorption characteristics (up to ~1100 nm) and field-effect electron mobility values of >1 cm(2) V(-1) s(-1). The synthesis of this novel DPP-DPP copolymer in combination with the demonstration of transistors with extremely high electron mobility makes this work an important step toward a new family of DPP-DPP copolymers for application in the general area of organic optoelectronics.


Journal of the American Chemical Society | 2008

Tetrathienoacene Copolymers As High Mobility, Soluble Organic Semiconductors

Hon Hang Fong; Vladimir A. Pozdin; Aram Amassian; George G. Malliaras; Detlef-M. Smilgies; Mingqian He; Susan M. Gasper; Feixia Zhang; Michael Lesley Sorensen

Increasing the rigidity of the thiophene monomer through the use of an alkyl-substituted core that consists of four fused thiophene rings is shown to be a promising route toward high-performance organic semiconductors. We report on a dialkylated tetrathienoacene copolymer that can be deposited from solution to yield ordered films with a short pi-pi distance of 3.76 A and with a field-effect hole mobility that exceeds 0.3 cm2/V.s. This polymer enables simple transistor fabrication at relatively low temperatures, which is particularly important for the realization of large-area, mechanically flexible electronics.


Advanced Materials | 2012

Solution‐Processed Small Molecule‐Polymer Blend Organic Thin‐Film Transistors with Hole Mobility Greater than 5 cm2/Vs

Jeremy Smith; Weimin Zhang; Rachid Sougrat; Kui Zhao; Ruipeng Li; Dongkyu Cha; Aram Amassian; Martin Heeney; Iain McCulloch; Thomas D. Anthopoulos

Using phase-separated organic semiconducting blends containing a small molecule, as the hole transporting material, and a conjugated amorphous polymer, as the binder material, we demonstrate solution-processed organic thin-film transistors with superior performance characteristics that include; hole mobility >5 cm(2) /Vs, current on/off ratio ≥10(6) and narrow transistor parameter spread. These exceptional characteristics are attributed to the electronic properties of the binder polymer and the advantageous nanomorphology of the blend film.


Nature Materials | 2017

Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids

Mengxia Liu; Oleksandr Voznyy; Randy P. Sabatini; F. Pelayo García de Arquer; Rahim Munir; Ahmed H. Balawi; Xinzheng Lan; Fengjia Fan; Grant Walters; Ahmad R. Kirmani; Sjoerd Hoogland; Frédéric Laquai; Aram Amassian; Edward H. Sargent

Bandtail states in disordered semiconductor materials result in losses in open-circuit voltage (Voc) and inhibit carrier transport in photovoltaics. For colloidal quantum dot (CQD) films that promise low-cost, large-area, air-stable photovoltaics, bandtails are determined by CQD synthetic polydispersity and inhomogeneous aggregation during the ligand-exchange process. Here we introduce a new method for the synthesis of solution-phase ligand-exchanged CQD inks that enable a flat energy landscape and an advantageously high packing density. In the solid state, these materials exhibit a sharper bandtail and reduced energy funnelling compared with the previous best CQD thin films for photovoltaics. Consequently, we demonstrate solar cells with higher Voc and more efficient charge injection into the electron acceptor, allowing the use of a closer-to-optimum bandgap to absorb more light. These enable the fabrication of CQD solar cells made via a solution-phase ligand exchange, with a certified power conversion efficiency of 11.28%. The devices are stable when stored in air, unencapsulated, for over 1,000 h.


Advanced Materials | 2013

Spin-cast bulk heterojunction solar cells: a dynamical investigation.

Kang Wei Chou; Buyi Yan; Ruipeng Li; Er Qiang Li; Kui Zhao; Dalaver H. Anjum; Steven Alvarez; Robert Gassaway; Alan Biocca; Sigurdur T. Thoroddsen; Alexander Hexemer; Aram Amassian

Spin-coating is extensively used in the lab-based manufacture of organic solar cells, including most of the record-setting solution-processed cells. We report the first direct observation of photoactive layer formation as it occurs during spin-coating. The study provides new insight into mechanisms and kinetics of bulk heterojunction formation, which may be crucial for its successful transfer to scalable printing processes.

Collaboration


Dive into the Aram Amassian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kui Zhao

Shaanxi Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ahmad R. Kirmani

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rahim Munir

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Maged Abdelsamie

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kang Wei Chou

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Muhammad R. Niazi

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Guy Olivier Ngongang Ndjawa

King Abdullah University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge