Arantxa Ortega
University of Alcalá
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arantxa Ortega.
Journal of The American Society of Nephrology | 2006
Arantxa Ortega; David Rámila; Juan A. Ardura; Vanesa Esteban; Marta Ruiz-Ortega; Antonio Barat; Rosa Gazapo; Ricardo J. Bosch; Pedro Esbrit
Parathyroid hormone-related protein (PTHrP) is shortly upregulated in acute renal injury, but its pathophysiologic role is unclear. Investigated was whether PTHrP might act as a profibrogenic factor in mice that do or do not overexpress PTHrP in the proximal tubule after folic acid (FA) nephrotoxicity, a model of acute renal damage followed by partial regeneration and patchy tubulointerstitial fibrosis. It was found that constitutive PTHrP overexpression in these animals conveyed a significant increase in tubulointerstitial fibrosis, associated with both fibroblast activation (as alpha-smooth muscle actin staining) and macrophage influx, compared with control littermates at 2 to 3 wk after FA damage. Cell proliferation and survival was higher (P<0.01) in the renal interstitium of PTHrP-overexpressing mice than in control littermates within this period after injury. Moreover, the former mice had a constitutive Bcl-XL protein overexpression. In vitro studies in renal tubulointerstitial and fibroblastic cells strongly suggest that PTHrP (1-36) (100 nM) reduced FA-induced apoptosis through a dual mechanism involving Bcl-XL upregulation and Akt and Bad phosphorylation. PTHrP (1-36) also stimulated monocyte chemoattractant protein-1 expression in tubuloepithelial cells, as well as type-1 procollagen gene expression and fibronectin (mRNA levels and protein secretion) in these cells and renal fibroblastic cells. Our findings indicate that this peptide, by interaction with the PTH1 receptor, can increase tubulointerstitial cell survival and seems to act as a proinflammatory and profibrogenic factor in the FA-damaged kidney.
Journal of The American Society of Nephrology | 2002
Óscar Lorenzo; Marta Ruiz-Ortega; Pedro Esbrit; Mónica Rupérez; Arantxa Ortega; Soledad Santos; Julia Blanco; Luis Ortega; Jesús Egido
Angiotensin II (AngII) participates in the pathogenesis of kidney damage. Parathyroid hormone (PTH)-related protein (PTHrP), a vasodilator and mitogenic agent, is upregulated during renal injury. The aim of this study was to investigate the potential relation between AngII and PTHrP system in the kidney. Different methods were used to find that both rat mesangial and mouse tubuloepithelial cells express PTHrP and the type 1 PTH/PTHrP receptor (PTH1R). In these cells, AngII increased PTHrP mRNA and protein production. In contrast, PTH1R mRNA was increased in mesangial cells and downregulated in tubular cells, but its protein levels were unmodified in both cells. AT(1) antagonist, but not AT(2), abolished AngII effects on PTHrP/PTH1R. The in vivo effect of AngII was further investigated by systemic infusion (a low dose of 50 ng/kg per min) into normal rats. In controls, PTHrP immunostaining was mainly detected in renal tubules. In AngII-infused rats, PTHrP staining increased in renal tubules and appeared in the glomerulus and the renal vessels. After AngII infusion, PTHR1 staining was markedly increased in all these renal structures at day 3 but remained elevated only in tubules at day 7. The AT(1) antagonist, but not the AT(2), significantly diminished AngII-induced PTHrP and PTHR1 overexpression in the renal tissue, associated with a decrease in tubular damage and fibrosis. The results indicate that AngII regulates renal PTHrP/PTH1R system via AT(1) receptors. These findings demonstrate that PTHrP upregulation occurs in association with the mechanisms of AngII-induced kidney injury.
Journal of The American Society of Nephrology | 2004
Nathalie Fiaschi-Taesch; Soledad Santos; Vasumathi Reddy; Scott K. Van Why; William F. Philbrick; Arantxa Ortega; Pedro Esbrit; John J. Orloff; Adolfo Garcia-Ocaña
Treatment of acute renal failure (ARF) would be enhanced by identification of factors that accelerate renal recovery from injury. Parathyroid hormone-related protein (PTHrP) and hepatocyte growth factor (HGF) have been shown to stimulate proliferation in proximal nephron-derived cells. For studying the pathophysiologic roles and therapeutic potential of these two factors in ARF, transgenic mice overexpressing PTHrP or HGF in the proximal tubule under the direction of the gamma-glutamyl transpeptidase-I promoter were developed. These mice display (1) abundant expression of the respective transgenes in the kidney; (2) similar PTH type I receptor and HGF receptor (c-met) expression levels in the proximal tubule compared with control littermates; and (3) normal renal morphology, function, and tubule cell proliferation under basal conditions. However, in contrast to control mice, when acute ischemic renal injury was induced, renal function rapidly and dramatically recovered in HGF-overexpressing mice. In addition, 48 h after ischemia, HGF-overexpressing transgenic mice displayed a fourfold increase in tubule cell proliferation and a threefold decrease in apoptotic tubule cell death compared with control mice. In contrast, PTHrP-overexpressing mice responded to either ischemic or folic acid-induced renal damage similarly to control mice. These studies demonstrate that overexpression of PTHrP in the proximal nephron of mice does not seem to provide protection against acute renal injury. In marked contrast, HGF overexpression results in dramatic protection from ischemia-induced ARF, without inducing any apparent alteration in the physiology of the kidney under normal conditions. These studies suggest that HGF, when targeted specifically to the proximal tubule, may have therapeutic potential in providing protection against ischemia-induced renal failure.
Journal of The American Society of Nephrology | 2005
Arantxa Ortega; David Rámila; Adriana Izquierdo; Laura González; Antonio Barat; Rosa Gazapo; Ricardo J. Bosch; Pedro Esbrit
Parathyroid hormone-related protein (PTHrP), a mitogenic factor for renal cells, is overexpressed in acute renal failure (ARF). Recent data support an association between PTHrP and the renin-angiotensin system in the damaged kidney. The effects of angiotensin II (Ang II) inhibitors (quinapril, enalapril, and/or losartan) on PTHrP and the PTH1 receptor (PTH1R) expression in rats with either folic acid (FA)- or gentamicin-induced ARF were analyzed. The decreased renal function and the PTHrP upregulation and PTH1R downregulation induced by the nephrotoxins were inhibited by the Ang II blockers. In tubuloepithelial cells NRK-52E, the rapid (10 min) increase in PTHrP mRNA by FA, associated with a perinuclear relocalization of Ang II/AT1 receptor, was inhibited by losartan but not candesartan, which traps Ang II receptors at the cell surface. Maximal PTHrP protein overexpression by FA (at 24 to 72 h)-or by exogenous Ang II-was abolished by both Ang II antagonists. PTHrP upregulation by FA was preceded by increased extracellular signal-regulated kinase (ERK) phosphorylation and inhibited by the ERK inhibitor PD098059. FA also activated cAMP response element-binding (CREB) protein, and this was prevented by losartan in these cells. Moreover, PTHrP mRNA overexpression by either FA or Ang II occurred in NRK 52E that were transfected with a CREB construct but not the dominant-negative CREB133 construct. These findings demonstrate that the decreased renal function and PTHrP overexpression in nephrotoxin-damaged kidney depends on renin-angiotensin system. In this setting, intracellular Ang II/AT1 receptor recycling seems to be related to PTHrP induction through ERK and CREB activation in tubuloepithelial cells.
American Journal of Nephrology | 2001
Pedro Esbrit; Soledad Santos; Arantxa Ortega; Teresa Fernández-Agulló; Esperanza Vélez; Soraya Troya; Pedro Garrido; Antonio Peña; Jordi Bover; Ricardo J. Bosch
Parathyroid hormone (PTH) and PTH-related protein (PTHrP) produce similar biological effects through the PTH/PTHrP receptor. Less is known about the physiological role of PTHrP, which was first identified as the agent of the humoral hypercalcemia of malignancy. Despite the widespread production of PTHrP in healthy individuals, the concentration of the protein is below the detectable limit of current assays, suggesting that PTHrP normally functions locally in an autocrine or paracrine manner. Thus, some differences in their biological activities have been described and they may be related to the presence of different receptors. In this regard, a second receptor that binds selectively to PTH has also been found. Recent studies have demonstrated the expression of both PTH/PTHrP receptor and protein in the renal glomeruli. Moreover, there are convincing data that support a direct role of PTH and PTHrP in modulating renal blood flow and glomerular filtration rate. This multifunctional protein, PTHrP, also has a proliferative effect on both glomerular mesangial cells and tubular epithelial cells. Increases in the expression of PTHrP have been observed in several experimental models of nephropathies, suggesting that PTHrP upregulation is a common event associated with the mechanism of renal injury and repair.
Kidney International | 2008
D. Rámila; J.A. Ardura; Vanesa Esteban; Arantxa Ortega; Marta Ruiz-Ortega; Ricardo J. Bosch; Pedro Esbrit
Parathyroid hormone-related protein (PTHrP) promotes fibrogenesis in the acutely damaged kidney. Considering the relation between fibrosis and inflammation, we studied transgenic mice that overexpress PTHrP in the proximal tubule. When unilateral ureteric obstruction was induced in these transgenic mice, we found that they had more renal tubulointerstitial damage, leukocyte influx, and expression of proinflammatory factors than their control littermates. Reversal of PTHrP constitutive overexpression in these transgenic mice or treatment of control mice with the PTHrP antagonist (7-34) decreased this inflammatory response. Losartan, which abolished obstruction-induced endogenous PTHrP upregulation, also decreased the latter response but less effectively in transgenic mice. The PTHrP fragment (1-36) induced nuclear factor-kappaB (NF-kappaB) activation and proinflammatory cytokine overexpression in mouse cortical tubule cells in culture as well as migration of the macrophage cell line Raw 264.7. All these effects were decreased by PTHrP (7-34) and NF-kappaB or extracellular signal-regulated kinase (ERK) activation inhibitors. Our findings suggest a critical role of PTHrP in the renal inflammatory process that results from ureteral obstruction and indicate that ERK-mediated NF-kappaB activation seems to be an important mechanism whereby PTHrP triggers renal inflammation.
Nephrology Dialysis Transplantation | 2010
Montserrat Romero; Arantxa Ortega; Adriana Izquierdo; Pilar López-Luna; Ricardo J. Bosch
BACKGROUND Hypertrophy of podocytes is characteristic in diabetic nephropathy (DN). Previously, we observed the upregulation of parathyroid hormone-related protein (PTHrP) and its receptor PTH1R, in experimental DN, associated with renal hypertrophy. Herein, we test the hypothesis that PTHrP participates in the mechanism of high glucose (HG)-induced podocyte hypertrophy. METHODS On mouse podocytes, hypertrophy was assessed by protein content/cell and [H(3)]leucine incorporation. Podocytes were stimulated with HG (25 mM), PTHrP(1-36) (100 nM), angiotensin II (AngII) (100 nM) or TGF-beta(1) (5 ng/mL) in the presence or absence of PTHrP-neutralizing antibodies (alpha-PTHrP), the PTH1R antagonist JB4250 (10 microM), PTHrP silencer RNA (siRNA) or TGF-beta(1) siRNA. Protein expression was analysed by western blot and immunohistochemistry. RESULTS HG-induced hypertrophy was abolished in the presence of either alpha-PTHrP or PTHrP siRNA. This effect was associated with an inhibition of the upregulation of TGF-beta(1) and p27(Kip1). JB4250 also inhibited HG-induced p27(Kip1) upregulation. Interestingly, whilst HG and AngII were unable to stimulate the expression of p27(Kip1) on PTHrP siRNA-transfected podocytes, TGF-beta(1) was still able to upregulate p27(Kip1) in these cells. Moreover, HG and PTHrP-induced hypertrophy as well as p27(Kip1) upregulation were abolished on TGF-beta(1) siRNA-transfected podocytes. Furthermore, the glomeruli of transgenic PTHrP-overexpressing mice showed a constitutive overexpression of TGF-beta(1) and p27(Kip1) to a degree similar to that of diabetic animals. CONCLUSIONS PTHrP seems to participate in the hypertrophic signalling triggered by HG. In this condition, AngII induces the upregulation of PTHrP, which might induce the expression of TGF-beta(1) and p27(Kip1). These findings provide new insights into the protective effects of AngII antagonists in DN, opening new paths for intervention.
Journal of Cellular Physiology | 2012
Arantxa Ortega; Montserrat Romero; Adriana Izquierdo; Nuria Troyano; Yolanda Arce; Juan A. Ardura; María Isabel Arenas; Jordi Bover; Pedro Esbrit; Ricardo J. Bosch
Hypertrophy of human mesangial cells (HMC) is among the earliest characteristics in patients with diabetic nephropathy (DN). Recently, we observed the upregulation of parathyroid hormone (PTH)‐related protein (PTHrP) in experimental DN, associated with renal hypertrophy. Herein, we first examined whether PTHrP was overexpressed in human DN, and next assessed the putative role of this protein on high glucose (HG)‐induced HMC hypertrophy. As previously found in mice, kidneys from diabetic patients showed an increased tubular and glomerular immunostaining for PTHrP. In HMC, HG medium increased PTHrP protein expression associated with the development of hypertrophy as assessed by cell protein content. This effect was also induced by PTHrP(1–36). HG and PTHrP(1–36)‐induced hypertrophy were associated with an increase in cyclin D1 and p27Kip1 protein expression, a decreased cyclin E expression, and the prevention of cyclin E/cdk2 complex activation. Both PTHrP neutralizing antiserum (α‐PTHrP) and the PTH/PTHrP receptor antagonist (JB4250) were able to abolish HG induction of hypertrophy, the aforementioned changes in cell cycle proteins, and also TGF‐β1 up‐regulation. Moreover, the capability of both HG and PTHrP(1–36) to induce HMC hypertrophy was abolished by α‐TGFβ1. These data show for the first time that PTHrP is upregulated in the kidney of patients with DN. Our findings also demonstrate that PTHrP acts as an important mediator of HG‐induced HMC hypertrophy by modulating cell cycle regulatory proteins and TGF‐β1. J. Cell. Physiol. 227: 1980–1987, 2012.
BioMed Research International | 2011
Ricardo J. Bosch; Arantxa Ortega; Adriana Izquierdo; Ignacio Arribas; Jordi Bover; Pedro Esbrit
Parathyroid hormone- (PTH-) related protein (PTHrP) and its receptor, the PTH1 receptor (PTH1R), are widely expressed in the kidney, where PTHrP exerts a modulatory action on renal function. PTHrP is known to be upregulated in several experimental nephropathies such as acute renal failure (ARF), obstructive nephropathy (ON) as well as diabetic nephropathy (DN). In this paper, we will discuss the functional consequences of chronic PTHrP overexpression in the damaged kidney using a transgenic mouse strain overexpressing PTHrP in the renal proximal tubule. In both ARF and ON, PTHrP displays proinflammatory and profibrogenic actions including the induction of epithelia to mesenquima transition. Moreover, PTHrP participates in the mechanisms of renal hypertrophy as well as proteinuria in experimental DN. Angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be, at least in part, responsible for endogenous PTHrP upregulation in these pathophysiological settings. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.
Experimental Diabetes Research | 2013
Arantxa Ortega; A. Fernández; María Isabel Arenas; P. López-Luna; C. Muñóz-Moreno; I. Arribas; N. Olea; L. García-Bermejo; J. Lucio-Cazana; Ricardo J. Bosch
The role of diabetic nephropathy in the outcome of acute renal injury (AKI) is not well defined. Herein we evaluate the outcome of lipopolysaccharide- (LPS-) induced AKI in streptozotocin-induced diabetes, as well as the potential role of Hypoxia Inducible Factor (HIF-1α) in this condition. Although 6 h after LPS injection all mice developed a decrease in renal function, proteinuric diabetic mice showed a better recovery of this parameter throughout the study (72 h). Both HIF-1α and vascular endothelium growth factor (VEGF) were found to be upregulated in diabetic mice. After LPS injection, all animals showed an upregulation of these factors, although it was higher in the diabetic group. Glycated albumin (GA) was found to upregulate HIF-1α in HK-2 cells, which resulted in increased production of VEGF. Interestingly, LPS cooperated with GA to induce HIF-1α upregulation. In conclusion, diabetic mice display a better recovery of AKI after experimental endotoxemia. Moreover, these animals showed an increased expression of both HIF-1α and VEGF that was reproduced by incubating renal cells with GA. Since VEGF is considered a survival factor for tubular cells, our findings suggest that diabetes displays HIF-1α upregulation that might function as a “precondition state” offering protection from endotoxic AKI.