Aránzazu Moreno
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aránzazu Moreno.
Virus Research | 2009
Alberto Fereres; Aránzazu Moreno
Homopterans including aphids, whiteflies and leafhoppers are the major vectors of viruses comprising more than 80% of insect-transmitted viruses which represents close to 400 virus species within 39 different genera. Host plant recognition by homopterans requires a series of steps that are linked to plant virus transmission, including host searching or pre-alighting behaviour, probing on superficial tissues, settlement and stylet penetration to the target feeding tissues and salivation and continuous sap ingestion from the preferred feeding site. This review considers how vector behaviour influences the transmission and spread of plant viruses depending on the type of virus-vector relationship. Most studies have concentrated on aphid-transmitted viruses and particular probing and feeding behavioural processes and activities leading to the transmission of cuticula-borne and circulative viruses have been identified. The review also focuses on which are the most likely retention sites within the insects body of cuticula-borne viruses. Finally, the influences of virus infection on vector behaviour such as changes in the attractiveness, settlement or feeding preference together with changes on vector performance (development, fecundity, rate of population increase and survival) are discussed.
PLOS ONE | 2013
Ana Moreno-Delafuente; E. Garzo; Aránzazu Moreno; Alberto Fereres
Plant viruses can produce direct and plant-mediated indirect effects on their insect vectors, modifying their life cycle, fitness and behavior. Viruses may benefit from such changes leading to enhanced transmission efficiency and spread. In our study, female adults of Bemisia tabaci were subjected to an acquisition access period of 72 h in Tomato yellow leaf curl virus (TYLCV)-infected and non-infected tomato plants to obtain viruliferous and non-viruliferous whiteflies, respectively. Insects that were exposed to virus-infected plants were checked by PCR to verify their viruliferous status. Results of the Ethovision video tracking bioassays indicated that TYLCV induced an arrestant behavior of B. tabaci, as viruliferous whitefly adults remained motionless for more time and moved slower than non-viruliferous whiteflies after their first contact with eggplant leaf discs. In fact, Electrical Penetration Graphs showed that TYLCV-viruliferous B. tabaci fed more often from phloem sieve elements and made a larger number of phloem contacts (increased number of E1, E2 and sustained E2 per insect, p<0.05) in eggplants than non-viruliferous whiteflies. Furthermore, the duration of the salivation phase in phloem sieve elements (E1) preceding sustained sap ingestion was longer in viruliferous than in non-viruliferous whiteflies (p<0.05). This particular probing behavior is known to significantly enhance the inoculation efficiency of TYLCV by B. tabaci. Our results show evidence that TYLCV directly manipulates the settling, probing and feeding behavior of its vector B. tabaci in a way that enhances virus transmission efficiency and spread. Furthermore, TYLCV-B. tabaci interactions are mutually beneficial to both the virus and its vector because B. tabaci feeds more efficiently after acquisition of TYLCV. This outcome has clear implications in the epidemiology and management of the TYLCV-B. tabaci complex.
European Journal of Plant Pathology | 2008
Edson Bertolini; Aránzazu Moreno; Nieves Capote; Antonio Olmos; Ana de Luis; Eduardo Vidal; Jordi Pérez-Panadés; Mariano Cambra
TaqMan real-time reverse transcriptase (RT)-polymerase chain reaction (PCR) using purified RNA targets or coupled to tissue-print and squash procedures was developed to detect and quantify Citrus tristeza virus (CTV) RNA-targets in plant tissues and in single aphids. With this method all CTV isolates tested from different hosts and origins were detected. The sensitivity of conventional real-time RT-PCR was 1,000 times higher than immunocapture (IC)-RT-nested PCR and 106 times higher than enzyme linked immunosorbent assay (ELISA). The quantitation limit ranged from 1.7 × 102 to 1.7 × 109 transcript copies. The estimated number of CTV RNA-targets detected in different organs of a CTV-infected tree ranged from 4.5 × 105 to 6.5 × 108 copies when purified RNA was used as template and from 1.9 × 104 to 3.7 × 106 when tissue-printed material was used. In single squashed aphids the number of copies ranged from 4.73 × 103 to 1.23 × 105. Reliable quantitation of CTV targets present in infected plant material or acquired by single aphid species, was achieved with tissue-print and squash procedures combined with real-time RT-PCR, both of which do not require extraction procedures or nucleic acid purification.
Journal of General Virology | 2002
Itziar Palacios; Martin Drucker; Stéphane Blanc; Silvia Leite; Aránzazu Moreno; Alberto Fereres
Cauliflower mosaic virus (CaMV) is transmitted in a non-circulative manner by aphids following the helper strategy. Helper proteins P2 and P3 act as a bridge between virions and the aphid cuticle. Electronic monitoring of aphid stylet activities (EPG technique), transmission tests and electron microscopy showed that CaMV is preferentially acquired from the phloem by its most common aphid vectors, Brevycorine brassicae and Myzus persicae. We also found that CaMV is semipersistently transmitted and that the rate of acquisition does not follow a typical bimodal curve. Instead, the virus could be acquired from non-phloem tissues at a low and fairly constant rate after one or more intracellular punctures within a few minutes, but the probability of acquisition rose significantly when aphids reached the phase of committed ingestion from the phloem. The acquisition rate of CaMV did not increase with increasing number of intracellular punctures, but the total duration of intracellular puncture was one of the variables selected by the stepwise logistic regression model used to fit the data that best explained acquisition of CaMV. Furthermore, aphids reaching the phloem faster had a higher probability of acquiring the virus. Our results support the hypothesis that multiple intracellular punctures of epidermal and mesophyll cells result in loading aphids with the CaMV-encoded aphid transmission factor (P2), and that aphids, in most cases, subsequently acquire CaMV particles during phloem sap ingestion. Consistently, immunoelectron microscopy showed that P3-virions are frequently found in the sieve element lumen, whereas P2 could not be detected.
eLife | 2013
Alexandre Martinière; Aurélie Bak; Jean Luc Macia; Nicole Lautredou; Daniel Gargani; Juliette Doumayrou; E. Garzo; Aránzazu Moreno; Alberto Fereres; Stéphane Blanc; Martin Drucker
Many plant and animal viruses are spread by insect vectors. Cauliflower mosaic virus (CaMV) is aphid-transmitted, with the virus being taken up from specialized transmission bodies (TB) formed within infected plant cells. However, the precise events during TB-mediated virus acquisition by aphids are unknown. Here, we show that TBs react instantly to the presence of the vector by ultra-rapid and reversible redistribution of their key components onto microtubules throughout the cell. Enhancing or inhibiting this TB reaction pharmacologically or by using a mutant virus enhanced or inhibited transmission, respectively, confirming its requirement for efficient virus-acquisition. Our results suggest that CaMV can perceive aphid vectors, either directly or indirectly by sharing the host perception. This novel concept in virology, where viruses respond directly or via the host to the outside world, opens new research horizons, that is, investigating the impact of ‘perceptive behaviors’ on other steps of the infection cycle. DOI: http://dx.doi.org/10.7554/eLife.00183.001
Entomologia Experimentalis Et Applicata | 2011
Aránzazu Moreno; E. Garzo; G. Fernandez-Mata; M. Kassem; Miguel A. Aranda; Alberto Fereres
Aphid feeding requires the secretion of two types of saliva: gelling saliva (from the principal gland) that forms an intercellular sheath for the penetrating stylet, and watery saliva [from accessory salivary glands (ASGs)] that facilitates intracellular penetration and phloem feeding. Plant viruses can be used as salivary markers to investigate key steps in aphid feeding, and penetration can be monitored electrically using the electrical penetration graph (EPG) approach. We conducted a series of EPG‐controlled transmission experiments using Cucurbit aphid‐borne yellows virus [CABYV; Polerovirus spec. (Luteoviridae)], which is retained in the ASGs, as a marker for watery saliva secretions. The melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae), was used as a vector and melon seedlings, Cucumis melo L. (Cucurbitaceae), as host plants. Viruliferous aphids were interrupted at various stages during stylet penetration, i.e., during intercellular penetration prior to intracellular puncture and following a potential drop within the first probe. Viruliferous aphids and leaf disc samples obtained from the stylet penetration site were used to detect CABYV by quantitative real‐time RT‐PCR. Approximately half of the inoculated leaf discs were found to be infected with CABYV after very brief (12.9 ± 1.9 s) intercellular stylet probes and before intracellular stylet puncture. The number of virus particles ejected during such probes was similar to the number ejected by aphids during longer probes including a single intracellular puncture. Our results therefore suggest that watery saliva is secreted by aphids from the onset of stylet penetration.
Virus Research | 2014
Aránzazu Moreno; E. Garzo; Alberto Fereres
Plant viruses are known to modify the behaviour of their insect vectors, both directly and indirectly, generally adapting to each type of virus-vector relationship in a way that enhances transmission efficiency. Here, we report results of three different studies showing how a virus transmitted in a non-persistent (NP) manner (Cucumber mosaic virus; CMV, Cucumovirus) can induce changes in its host plant, cucumber (Cucumis sativus cv. Marumba) that modifies the behaviour of its aphid vector (Aphis gossypii Glover; Hemiptera: Aphididae) in a way that enhances virus transmission and spread non-viruliferous aphids changed their alighting, settling and probing behaviour activities over time when exposed to CMV-infected and mock-inoculated cucumber plants. Aphids exhibited no preference to migrate from CMV-infected to mock-inoculated plants at short time intervals (1, 10 and 30 min after release), but showed a clear shift in preference to migrate from CMV-infected to mock-inoculated plants 60 min after release. Our free-choice preference assays showed that A. gossypii alates preferred CMV-infected over mock-inoculated plants at an early stage (30 min), but this behaviour was reverted at a later stage and aphids preferred to settle and reproduce on mock-inoculated plants. The electrical penetration graph (EPG) technique revealed a sharp change in aphid probing behaviour over time when exposed to CMV-infected plants. At the beginning (first 15 min) aphid vectors dramatically increased the number of short superficial probes and intracellular punctures when exposed to CMV-infected plants. At a later stage (second hour of recording) aphids diminished their feeding on CMV-infected plants as indicated by much less time spent in phloem salivation and ingestion (E1 and E2). This particular probing behaviour including an early increase in the number of short superficial probes and intracellular punctures followed by a phloem feeding deterrence is known to enhance the transmission efficiency of viruses transmitted in a NP manner. We conclude that CMV induces specific changes in a plant host that modify the alighting, settling and probing behaviour of its main vector A. gossypii, leading to optimum transmission and spread of the virus. Our findings should be considered when modelling the spread of viruses transmitted in a NP manner.
Annals of The Entomological Society of America | 2005
Aránzazu Moreno; Itziar Palacios; Stéphane Blanc; Alberto Fereres
Abstract Cauliflower mosaic virus (CaMV) is transmitted to crucifers in a noncirculative manner by several aphid species. CaMV is preferentially acquired from the phloem, although acquisition also occurs after brief intracellular stylet punctures of aphid vectors in nonvascular leaf tissues. In the present work, we used the electrical penetration graph technique to study the specific aphid stylet activities and behavioral events leading to the inoculation of CaMV to turnip plants by its two major vectors, Brevicoryne brassicae (L.) and Myzus persicae (Sulzer). Aphids subjected to an 8-h acquisition access time on infected plants were transferred to test plants and removed immediately after specific behavioral events were recorded. CaMV was readily inoculated after the first intracellular puncture in nonvascular tissues by both vector species. Inoculation rate of CaMV by B. brassicae was the highest after a 3-h inoculation access period, regardless of whether aphids had reached the phloem phase during that period. Consistent interspecific differences also were found in the ability of both aphid vectors to retain CaMV. B. brassicae could retain the virus after several intracellular punctures, whereas M. persicae readily lost the virus after performing the same number of intracellular stylet punctures. We concluded that salivation by aphids during successive intracellular stylet punctures in the epidermal and mesophyll cells before reaching the phloem phase are the key behavioral events associated to the inoculation of Cauliflower mosaic virus. The likely location of the viral retention site inside the aphid mouthparts is discussed.
Scientific Reports | 2016
Beatriz Dáder; Alberto Fereres; Aránzazu Moreno; Piotr Trębicki
Increasing atmospheric carbon dioxide (CO2) impacts plant growth and metabolism. Indirectly, the performance and feeding of insects is affected by plant nutritional quality and resistance traits. Life history and feeding behaviour of Myzus persicae were studied on pepper plants under ambient (aCO2, 400 ppm) or elevated CO2 (eCO2, 650 ppm), as well as the direct impact on plant growth and leaf chemistry. Plant parameters were significantly altered by eCO2 with a negative impact on aphid’s life history. Their pre-reproductive period was 11% longer and fecundity decreased by 37%. Peppers fixed significantly less nitrogen, which explains the poor aphid performance. Plants were taller and had higher biomass and canopy temperature. There was decreased aphid salivation into sieve elements, but no differences in phloem ingestion, indicating that the diminished fitness could be due to poorer tissue quality and unfavourable C:N balance, and that eCO2 was not a factor impeding feeding. Aphid ability to transmit Cucumber mosaic virus (CMV) was studied by exposing source and receptor plants to ambient (427 ppm) or elevated (612 ppm) CO2 before or after virus inoculation. A two-fold decrease on transmission was observed when receptor plants were exposed to eCO2 before aphid inoculation when compared to aCO2.
Journal of General Virology | 2012
Aránzazu Moreno; W.F. Tjallingii; G. Fernandez-Mata; Alberto Fereres
Inoculation of the semi-persistent cauliflower mosaic virus (CaMV, genus Caulimovirus) is associated with successive brief (5-10 s) intracellular stylet punctures (pd) when aphids probe in epidermal and mesophyll cells. In contrast to non-persistent viruses, there is no evidence for which of the pd subphases (II-1, II-2 and II-3) is involved in the inoculation of CaMV. Experiments were conducted using the electrical penetration graph (EPG) technique to investigate which particular subphases of the pd are associated with the inoculation of CaMV to turnip by its aphid vector Brevicoryne brassicae. In addition, the same aphid species/test plant combination was used to compare the role of the pd subphases in the inoculation of the non-persistent turnip mosaic virus (TuMV, genus Potyvirus). Inoculation of TuMV was found to be related to subphase II-1, confirming earlier results, but CaMV inoculation appeared to be related exclusively to subphase II-2 instead. The mechanism of CaMV inoculation and the possible nature of subphase II-2 are discussed in the scope of our findings.