Arash Komeili
University of California, Berkeley
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arash Komeili.
Nature | 2013
D. Le Sage; Ken Arai; David R. Glenn; Stephen DeVience; Linh Pham; Lilah Rahn-Lee; Mikhail D. Lukin; Amir Yacoby; Arash Komeili; Ronald L. Walsworth
Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (for example, magnetic resonance imaging), or entail operating conditions that preclude application to living biological samples while providing submicrometre resolution (for example, scanning superconducting quantum interference device microscopy, electron holography and magnetic resonance force microscopy). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nanometres), using an optically detected magnetic field imaging array consisting of a nanometre-scale layer of nitrogen–vacancy colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the nitrogen–vacancy quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria. We also spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field microscopy allows parallel optical and magnetic imaging of multiple cells in a population with submicrometre resolution and a field of view in excess of 100 micrometres. Scanning electron microscope images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. Our results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Dorothée Murat; Anna Quinlan; Hojatollah Vali; Arash Komeili
Although membrane-bounded compartments are commonly considered a unique eukaryotic characteristic, many species of bacteria have organelles. Compartmentalization is well studied in eukaryotes; however, the molecular factors and processes leading to organelle formation in bacteria are poorly understood. We use the magnetosome compartments of magnetotactic bacteria as a model system to investigate organelle biogenesis in a prokaryotic system. The magnetosome is an invagination of the cell membrane that contains a specific set of proteins able to direct the synthesis of a nanometer-sized magnetite crystal. A well-conserved region called the magnetosome island (MAI) is known to be essential for magnetosome formation and contains most of the genes previously implicated in magnetosome formation. Here, we present a comprehensive functional analysis of the MAI genes in a magnetotactic bacterium, Magnetospirillum magneticum AMB-1. By characterizing MAI deletion mutants, we show that parts of its conserved core are not essential for magnetosome biogenesis and that nonconserved genes are important for crystal formation. Most importantly, we show that the mamAB gene cluster encodes for factors important for magnetosome membrane biogenesis, for targeting of proteins to this compartment and for several steps during magnetite production. Altogether, this genetic analysis defines the function of more than a dozen factors participating in magnetosome formation and shows that magnetosomes are assembled in a step-wise manner in which membrane biogenesis, magnetosome protein localization, and biomineralization are placed under discrete genetic control.
Fems Microbiology Reviews | 2012
Arash Komeili
Magnetotactic bacteria (MB) are remarkable organisms with the ability to exploit the earths magnetic field for navigational purposes. To do this, they build specialized compartments called magnetosomes that consist of a lipid membrane and a crystalline magnetic mineral. These organisms have the potential to serve as models for the study of compartmentalization as well as biomineralization in bacteria. Additionally, they offer the opportunity to design applications that take advantage of the particular properties of magnetosomes. In recent years, a sustained effort to identify the molecular basis of this process has resulted in a clearer understanding of the magnetosome formation and biomineralization. Here, I present an overview of MB and explore the possible molecular mechanisms of membrane remodeling, protein sorting, cytoskeletal organization, iron transport, and biomineralization that lead to the formation of a functional magnetosome organelle.
Current Opinion in Cell Biology | 2000
Arash Komeili; Erin Shea
The compartmentalization of DNA in the nucleus of eukaryotic cells establishes a connection between the nuclear transport machinery and the transcriptional apparatus. General transcription factors, as well as specific transcriptional activators and repressors, such as p53 and NF-AT, need to be imported into the nucleus following their translation. In addition, nuclear transport plays a crucial role in regulating the activity of many transcription factors.
Molecular Microbiology | 2011
Olga Draper; Meghan E. Byrne; Zhuo Li; Seperh Keyhani; Joyce Cueto Barrozo; Grant J. Jensen; Arash Komeili
Bacterial actins, in contrast to their eukaryotic counterparts, are highly divergent proteins whose wide‐ranging functions are thought to correlate with their evolutionary diversity. One clade, represented by the MamK protein of magnetotactic bacteria, is required for the subcellular organization of magnetosomes, membrane‐bound organelles that aid in navigation along the earths magnetic field. Using a fluorescence recovery after photobleaching assay in Magnetospirillum magneticum AMB‐1, we find that, like traditional actins, MamK forms dynamic filaments that require an intact NTPase motif for their turnover in vivo. We also uncover two proteins, MamJ and LimJ, which perform a redundant function to promote the dynamic behaviour of MamK filaments in wild‐type cells. The absence of both MamJ and LimJ leads to static filaments, a disrupted magnetosome chain, and an anomalous build‐up of cytoskeletal filaments between magnetosomes. Our results suggest that MamK filaments, like eukaryotic actins, are intrinsically stable and rely on regulators for their dynamic behaviour, a feature that stands in contrast to some classes of bacterial actins characterized to date.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Natalie Zeytuni; Ertan Ozyamak; Kfir Ben-Harush; Geula Davidov; Maxim Levin; Yair Gat; Tal Moyal; Ashraf Brik; Arash Komeili; Raz Zarivach
The magnetosome, a biomineralizing organelle within magnetotactic bacteria, allows their navigation along geomagnetic fields. Magnetosomes are membrane-bound compartments containing magnetic nanoparticles and organized into a chain within the cell, the assembly and biomineralization of magnetosomes are controlled by magnetosome-associated proteins. Here, we describe the crystal structures of the magnetosome-associated protein, MamA, from Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. MamA folds as a sequential tetra-trico-peptide repeat (TPR) protein with a unique hook-like shape. Analysis of the MamA structures indicates two distinct domains that can undergo conformational changes. Furthermore, structural analysis of seven crystal forms verified that the core of MamA is not affected by crystallization conditions and identified three protein–protein interaction sites, namely a concave site, a convex site, and a putative TPR repeat. Additionally, relying on transmission electron microscopy and size exclusion chromatography, we show that highly stable complexes form upon MamA homooligomerization. Disruption of the MamA putative TPR motif or N-terminal domain led to protein mislocalization in vivo and prevented MamA oligomerization in vitro. We, therefore, propose that MamA self-assembles through its putative TPR motif and its concave site to create a large homooligomeric scaffold which can interact with other magnetosome-associated proteins via the MamA convex site. We discuss the structural basis for TPR homooligomerization that allows the proper function of a prokaryotic organelle.
Molecular Microbiology | 2012
Dorothée Murat; Veesta Falahati; Luca Bertinetti; Roseann Csencsits; Kenneth H. Downing; Damien Faivre; Arash Komeili
Magnetotactic bacteria (MTB) use magnetosomes, membrane‐bound crystals of magnetite or greigite, for navigation along geomagnetic fields. In Magnetospirillum magneticum sp. AMB‐1, and other MTB, a magnetosome gene island (MAI) is essential for every step of magnetosome formation. An 8‐gene region of the MAI encodes several factors implicated in control of crystal size and morphology in previous genetic and proteomic studies. We show that these factors play a minor role in magnetite biomineralization in vivo. In contrast, MmsF, a previously uncharacterized magnetosome membrane protein encoded within the same region plays a dominant role in defining crystal size and morphology and is sufficient for restoring magnetite synthesis in the absence of the other major biomineralization candidates. In addition, we show that the 18 genes of the mamAB gene cluster of the MAI are sufficient for the formation of an immature magnetosome organelle. Addition of MmsF to these 18 genes leads to a significant enhancement of magnetite biomineralization and an increase in the cellular magnetic response. These results define a new biomineralization protein and lay down the foundation for the design of autonomous gene cassettes for the transfer of the magnetic phenotype in other bacteria.
Molecular Microbiology | 2011
Anna Quinlan; Dorothée Murat; Hojatollah Vali; Arash Komeili
Magnetotactic bacteria contain nanometre‐sized, membrane‐bound organelles, called magnetosomes, which are tasked with the biomineralization of small crystals of the iron oxide magnetite allowing the organism to use geomagnetic field lines for navigation. A key player in this process is the HtrA/DegP family protease MamE. In its absence, Magnetospirillum magneticum str AMB‐1 is able to form magnetosome membranes but not magnetite crystals, a defect previously linked to the mislocalization of magnetosome proteins. In this work we use a directed genetic approach to find that MamE, and another predicted magnetosome‐associated protease, MamO, likely function as proteases in vivo. However, as opposed to the complete loss of mamE where no biomineralization is observed, the protease‐deficient variant of this protein still supports the initiation and formation of small, 20 nm‐sized crystals of magnetite, too small to hold a permanent magnetic dipole moment. This analysis also reveals that MamE is a bifunctional protein with a protease‐independent role in magnetosome protein localization and a protease‐dependent role in maturation of small magnetite crystals. Together, these results imply the existence of a previously unrecognized ‘checkpoint’ in biomineralization where MamE moderates the completion of magnetite formation and thus committal to magneto‐aerotaxis as the organisms dominant mode of navigating the environment.
Cold Spring Harbor Perspectives in Biology | 2010
Dorothée Murat; Meghan E. Byrne; Arash Komeili
Mounting evidence in recent years has challenged the dogma that prokaryotes are simple and undefined cells devoid of an organized subcellular architecture. In fact, proteins once thought to be the purely eukaryotic inventions, including relatives of actin and tubulin control prokaryotic cell shape, DNA segregation, and cytokinesis. Similarly, compartmentalization, commonly noted as a distinguishing feature of eukaryotic cells, is also prevalent in the prokaryotic world in the form of protein-bounded and lipid-bounded organelles. In this article we highlight some of these prokaryotic organelles and discuss the current knowledge on their ultrastructure and the molecular mechanisms of their biogenesis and maintenance.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Meghan E. Byrne; David A. Ball; Jean-Luc Guerquin-Kern; Isabelle Rouiller; Ting-Di Wu; Kenneth H. Downing; Hojatollah Vali; Arash Komeili
Intracellular magnetite crystal formation by magnetotactic bacteria has emerged as a powerful model for investigating the cellular and molecular mechanisms of biomineralization, a process common to all branches of life. Although magnetotactic bacteria are phylogenetically diverse and their crystals morphologically diverse, studies to date have focused on a few, closely related species with similar crystal habits. Here, we investigate the process of magnetite biomineralization in Desulfovibrio magneticus sp. RS-1, the only reported species of cultured magnetotactic bacteria that is outside of the α-Proteobacteria and that forms bullet-shaped crystals. Using a variety of high-resolution imaging and analytical tools, we show that RS-1 cells form amorphous, noncrystalline granules containing iron and phosphorus before forming magnetite crystals. Using NanoSIMS (dynamic secondary ion mass spectroscopy), we show that the iron-phosphorus granules and the magnetite crystals are likely formed through separate cellular processes. Analysis of the cellular ultrastructure of RS-1 using cryo-ultramicrotomy, cryo-electron tomography, and tomography of ultrathin sections reveals that the magnetite crystals are not surrounded by membranes but that the iron-phosphorus granules are surrounded by membranous compartments. The varied cellular paths for the formation of these two minerals lead us to suggest that the iron-phosphorus granules constitute a distinct bacterial organelle.