Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arata Tsutaki is active.

Publication


Featured researches published by Arata Tsutaki.


Journal of Applied Physiology | 2013

mTOR signaling response to resistance exercise is altered by chronic resistance training and detraining in skeletal muscle.

Riki Ogasawara; Koji Kobayashi; Arata Tsutaki; Kihyuk Lee; Takashi Abe; Satoshi Fujita; Koichi Nakazato; Naokata Ishii

Resistance training-induced muscle anabolism and subsequent hypertrophy occur most rapidly during the early phase of training and become progressively slower over time. Currently, little is known about the intracellular signaling mechanisms underlying changes in the sensitivity of muscles to training stimuli. We investigated the changes in the exercise-induced phosphorylation of hypertrophic signaling proteins during chronic resistance training and subsequent detraining. Male rats were divided into four groups: 1 bout (1B), 12 bouts (12B), 18 bouts (18B), and detraining (DT). In the DT group, rats were subjected to 12 exercise sessions, detrained for 12 days, and then were subjected to 1 exercise session before being killed. Isometric training consisted of maximum isometric contraction, which was produced by percutaneous electrical stimulation of the gastrocnemius muscle every other day. Muscles were removed 24 h after the final exercise session. Levels of total and phosphorylated p70S6K, 4E-BP1, rpS6, and p90RSK levels were measured, and phosphorylation of p70S6K, rpS6, and p90RSK was elevated in the 1B group compared with control muscle (CON) after acute resistance exercise, whereas repeated bouts of exercise suppressed those phosphorylation in both 12B and 18B groups. Interestingly, these phosphorylation levels were restored after 12 days of detraining in the DT group. On the contrary, phosphorylation of 4E-BP1 was not altered with chronic training and detraining, indicating that, with chronic resistance training, anabolic signaling becomes less sensitive to resistance exercise stimuli but is restored after a short detraining period.


BioMed Research International | 2013

Effect of Intermittent Low-Frequency Electrical Stimulation on the Rat Gastrocnemius Muscle

Arata Tsutaki; Riki Ogasawara; Koji Kobayashi; Kihyuk Lee; Karina Kouzaki; Koichi Nakazato

Low-frequency neuromuscular electrical stimulation (NMES) has been used as an endurance exercise model. This study aimed to test whether low-frequency NMES increases the phosphorylation of anabolic signaling molecules and induces skeletal muscle hypertrophy, as seen with high-frequency NMES. Using Sprague-Dawley rats, 1 bout of exercise (with dissection done immediately (Post0) and 3 h (Post3) after exercise) and another 6 sessions of training were performed. All experimental groups consisted of high- and low-frequency stimulation (HFS: 100 Hz; LFS: 10 Hz). Periodic acid-Schiff (PAS) staining was conducted to investigate type II fiber activation, and western blot analysis (WB) was conducted to examine whether NMES leads to anabolic intracellular signaling. At first, we examined the acute effect of exercise. PAS staining revealed that glycogen depletion occurred in both type I and type II fibers. WB results demonstrated that p70S6K phosphorylation was significantly increased by HFS, but there was no significant difference with LFS. In contrast, ERK 1/2 phosphorylation was increased by LFS at Post0. In the 6-session training, the wet weight and myofibrillar protein were significantly increased by both HFS and LFS. In conclusion, LFS has a similar anabolic effect for skeletal muscle hypertrophy as HFS, but the mediating signaling pathway might differ.


Muscle & Nerve | 2014

Eccentric contractions of gastrocnemius muscle-induced nerve damage in rats

Kihyuk Lee; Karina Kouzaki; Eisuke Ochi; Koji Kobayashi; Arata Tsutaki; Kenji Hiranuma; Katsuya Kami; Koichi Nakazato

We examined the effects of gastrocnemius eccentric contractions (ECs) on the sciatic nerve in rats. Methods: Rats were divided randomly into the following 3 groups: control, 180EC (ECs with 180°/s angular velocity), and 30EC (ECs with 30°/s angular velocity). Twenty ECs were induced by electrical stimulation of the gastrocnemius. On days 3, 7, and 10 after the ECs, nerve conduction velocity (NCV) was measured, and sciatic nerve branches were harvested for analysis. Results: A significant decrease in NCV was observed between the control and day‐7 180EC. Significant reduction in the levels of myelin sheath protein zero (p0) between day 7 and day 3 180EC and a significant increase of macrophage‐related protein and tyrosine kinase receptor C were observed between day 7 180EC and day 7 30EC. Conclusions: ECs with fast angular velocities induce functional and structural damage in innervating nerve. Muscle Nerve 50: 87–94, 2014


Applied Physiology, Nutrition, and Metabolism | 2018

Electrically evoked local muscle contractions cause an increase in hippocampal BDNF

Takahiro Maekawa; Riki Ogasawara; Arata Tsutaki; Kihyuk Lee; Satoshi Nakada; Koichi Nakazato; Naokata Ishii

High-intensity exercise has recently been shown to cause an increase in brain-derived neurotropic factor (BDNF) in the hippocampus. Some studies have suggested that myokines secreted from contracting skeletal muscle, such as irisin (one of the truncated form of fibronectin type III domain-containing protein 5 (FNDC5)), play important roles in this process. Thus, we hypothesized that locally evoked muscle contractions may cause an increase of BDNF in the hippocampus through some afferent mechanisms. Under anesthesia, Sprague-Dawley rats were fixed on a custom-made dynamometer and their triceps surae muscles were made to maximally contract via delivery of electric stimulations of the sciatic nerve (100 Hz with 1-ms pulse and 3-s duration). Following 50 repeated maximal isometric contractions, the protein expressions of BDNF and activation of its receptor in the hippocampus significantly increased compared with the sham-operated control rats. However, the expression of both BDNF and FNDC5 within stimulated muscles did not significantly increase, nor did their serum concentrations change. These results indicate that local muscular contractions under unconsciousness can induce BDNF expression in the hippocampus. This effect may be mediated by peripheral reception of muscle contraction, but not by systemic factors.


Physiological Reports | 2018

Past injurious exercise attenuates activation of primary calcium‐dependent injury pathways in skeletal muscle during subsequent exercise

Ryo Takagi; Riki Ogasawara; Junya Takegaki; Yuki Tamura; Arata Tsutaki; Koichi Nakazato; Naokata Ishii

Past contraction‐induced skeletal muscle injury reduces the degree of subsequent injury; this phenomenon is called the “repeated bout effect (RBE).” This study addresses the mechanisms underlying the RBE, focusing on primary calcium‐dependent injury pathways. Wistar rats were subdivided into single injury (SI) and repeated injury (RI) groups. At age 10 weeks, the right gastrocnemius muscle in each rat in the RI group was subjected to strenuous eccentric contractions (ECs). Subsequently, mild ECs were imposed on the same muscle of each rat at 14 weeks of age in both groups. One day after the exercise, the RI group showed a lower strength deficit than did the SI group, and neither group manifested any increase in membrane permeability. The concentration of protein carbonyls and activation of total calpain increased after ECs given at the age of 14 weeks. Nonetheless, these increases were lower in the RI group than in the SI group. Furthermore, calcium‐dependent autolysis of calpain‐1 and calpain‐3 in the RI group was diminished as compared with that in the SI group. Although peak ankle joint torque and total force generation during ECs at the age of 14 weeks were similar between the two groups, phosphorylation of JNK (Thr183/Tyr185), an indicator of mechanical stress applied to a muscle, was lower in the RI group than in the SI group. These findings suggest that activation of the primary calcium‐dependent injury pathways is attenuated by past injurious exercise, and mechanical stress applied to muscle fibers during ECs may decrease in the RBE.


Physiological Reports | 2018

Dietary apple polyphenols increase skeletal muscle capillaries in Wistar rats

Yuki Yoshida; Arata Tsutaki; Yuki Tamura; Karina Kouzaki; Koichi Sashihara; Shohei Nakashima; Motoyuki Tagashira; Ryuichi Tatsumi; Koichi Nakazato

Dietary apple polyphenols (AP) have been shown to exhibit beneficial effects on muscle endurance. Fast‐to‐slow change in the composition of myosin heavy chains was known as one of the molecular mechanisms. Here, we examined the effects of dietary AP on the capillaries and mitochondria in the rat skeletal muscle to elucidate the mechanisms underlying muscular endurance enhancement. Twenty‐four Wistar male rats were divided into three groups, namely, the control group, 0.5% AP group, and 5% AP group (n = 8 in each group). After a feeding period of 4 weeks, rats were dissected, gastrocnemius muscles were removed, and the density of capillaries and levels of mitochondrial proteins were analyzed. Capillary density of the gastrocnemius increased to 17.8% in rats fed with 5% AP as compared to the control rats. No significant change was observed in the mitochondrial content and dynamics (fusion/fission) of regulatory proteins. To investigate the mechanisms underlying the increase in the capillary density, positive (vascular endothelial cell growth factor, VEGF) and negative (thrombosponsin‐1, TSP‐1) factors of angiogenesis were analyzed. TSP‐1 expression significantly decreased in rats fed with 0.5% AP and 5% AP by approximately 25% and 40%, respectively, as compared with the control rats. There were no significant differences in VEGF expression. Thus, dietary AP may increase the muscle capillary density by decreasing TSP‐1 expression. We concluded that the increase in the capillary density and the fast‐to‐slow change in myosin heavy chains by AP feeding are the main causes for muscle endurance enhancement in Wistar rats.


Journal of Applied Physiology | 2018

Influence of past injurious exercise on fiber type-specific acute anabolic response to resistance exercise in skeletal muscle

Ryo Takagi; Riki Ogasawara; Junya Takegaki; Arata Tsutaki; Koichi Nakazato; Naokata Ishii

We investigated the influence of past injurious exercise on anabolic response of skeletal muscle fibers to resistance exercise (RE). Wistar rats were divided into exercise (E) and exercise-after-injury (I-E) groups. At age 10 wk, the right gastrocnemius muscle in each rat in the I-E group was subjected to strenuous eccentric contractions. Subsequently, RE was imposed on the same muscle of each rat at 14 wk of age in both groups. Peak joint torque and total force generation per body mass during RE were similar between the groups. Muscle protein synthesis (MPS) in the I-E group was higher than that in the E group 6 h after RE. Furthermore, levels of phospho-p70S6 kinase (Thr389) and phospho-ribosomal protein S6 (phospho-rpS6) (Ser240/244), a downstream target of p70S6 kinase, were higher in the I-E group than in the E group. For the anabolic response in each fiber type, the I-E group showed a higher MPS response in type IIb, IIa, and I fibers and a higher phospho-rpS6 response in type IIx, IIa, and I fibers than the E group. In the I-E group, the relative content of myosin heavy chain (MHC) IIa was higher and that of MHC IIb was lower than those in the E group. In addition, type IIa fibers showed a lower MPS response to RE than type IIb fibers in the I-E group. In conclusion, the past injurious exercise enhanced the MPS and phospho-rpS6 responses in type IIb, IIa, and I fibers and type IIx, IIa, and I fibers, respectively. NEW & NOTEWORTHY Past injurious exercise increased the muscle protein synthesis (MPS) response and mammalian target of rapamycin complex 1 (mTORC1) signaling activation to resistance exercise. In the responses of each fiber type, the past injurious exercise increased the MPS and phosphorylation ribosomal protein (Ser240/244) responses in type IIb, IIa, and I fibers and type IIx, IIa, and I fibers, respectively.


Physiological Reports | 2017

Repeated bouts of resistance exercise with short recovery periods activates mTOR signaling, but not protein synthesis, in mouse skeletal muscle

Junya Takegaki; Riki Ogasawara; Yuki Tamura; Ryo Takagi; Yuki Arihara; Arata Tsutaki; Koichi Nakazato; Naokata Ishii

The recovery period between bouts of exercise is one of the major factors influencing the effects of resistance exercise, in addition to exercise intensity and volume. However, the effects of shortening the recovery time between bouts of resistance exercise on subsequent protein synthesis remain unclear. In this study, we investigated the consequences of shortening the recovery time between bouts of resistance exercise on protein synthesis and related processes in mouse skeletal muscles. Eighteen male C57BL/6J mice were randomly subjected to three bouts of resistance exercise with 72 (72H), 24 (24H), or 8 h (8H) of recovery periods between bouts. Resistance exercise, consisting of five sets of 3 s × 10 isometric contractions with 3 min rest between sets, was elicited on the right tibialis anterior muscle via percutaneous electrical stimulation on the deep peroneal nerve under isoflurane anesthesia. The left muscle served as an internal control. Six hours after the third bout of exercise, protein synthesis was found to be activated in the 72H and 24H groups, but not in the 8H group. Phosphorylation of p70S6K at Thr 389, a marker of mammalian target of rapamycin (mTOR) signaling, was increased in all groups, with the 8H group showing the highest magnitude. In contrast, protein carbonylation was observed only in mice in the 8H group. These results suggest that repeated bouts of resistance exercise with 8 h of recovery periods do not effectively increase the levels of muscle protein synthesis despite activation of the mTOR signaling pathway, which likely involves oxidative stress.


Physiological Research | 2012

Genetic Strain-Dependent Protein Metabolism and Muscle Hypertrophy Under Chronic Isometric Training in Rat Gastrocnemius Muscle

Koji Kobayashi; Riki Ogasawara; Arata Tsutaki; Kihyuk Lee; Eisuke Ochi; Koichi Nakazato


Pflügers Archiv: European Journal of Physiology | 2016

Regional adaptation of collagen in skeletal muscle to repeated bouts of strenuous eccentric exercise

Ryo Takagi; Riki Ogasawara; Arata Tsutaki; Koichi Nakazato; Naokata Ishii

Collaboration


Dive into the Arata Tsutaki's collaboration.

Top Co-Authors

Avatar

Koichi Nakazato

Nippon Sport Science University

View shared research outputs
Top Co-Authors

Avatar

Riki Ogasawara

Nagoya Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kihyuk Lee

Nippon Sport Science University

View shared research outputs
Top Co-Authors

Avatar

Koji Kobayashi

Nippon Sport Science University

View shared research outputs
Top Co-Authors

Avatar

Takashi Abe

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karina Kouzaki

Nippon Sport Science University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge