Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aravinda Chakravarti is active.

Publication


Featured researches published by Aravinda Chakravarti.


Nature | 2009

Finding the missing heritability of complex diseases

Teri A. Manolio; Francis S. Collins; Nancy J. Cox; David B. Goldstein; Lucia A. Hindorff; David J. Hunter; Mark I. McCarthy; Erin M. Ramos; Lon R. Cardon; Aravinda Chakravarti; Judy H. Cho; Alan E. Guttmacher; Augustine Kong; Elaine R. Mardis; Charles N. Rotimi; Montgomery Slatkin; David Valle; Alice S. Whittemore; Michael Boehnke; Andrew G. Clark; Evan E. Eichler; Greg Gibson; Jonathan L. Haines; Trudy F. C. Mackay; Steven A. McCarroll; Peter M. Visscher

Genome-wide association studies have identified hundreds of genetic variants associated with complex human diseases and traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the remaining, ‘missing’ heritability can be explained. Here we examine potential sources of missing heritability and propose research strategies, including and extending beyond current genome-wide association approaches, to illuminate the genetics of complex diseases and enhance its potential to enable effective disease prevention or treatment.


Cell | 1991

DNA duplication associated with Charcot-Marie-Tooth disease type 1A

James R. Lupski; Roberto Montes de Oca-Luna; Susan A. Slaugenhaupt; Liu Pentao; Vito Guzzetta; Barbara J. Trask; Odila Saucedo-Cardenas; David F. Barker; James M. Killian; Carlos A. Garcia; Aravinda Chakravarti; Pragna Patel

Charcot-Marie-tooth disease type 1A (CMT1A) was localized by genetic mapping to a 3 cM interval on human chromosome 17p. DNA markers within this interval revealed a duplication that is completely linked and associated with CMT1A. The duplication was demonstrated in affected individuals by the presence of three alleles at a highly polymorphic locus, by dosage differences at RFLP alleles, and by two-color fluorescence in situ hybridization. Pulsed-field gel electrophoresis of genomic DNA from patients of different ethnic origins showed a novel SacII fragment of 500 kb associated with CMT1A. A severely affected CMT1A offspring from a mating between two affected individuals was demonstrated to have this duplication present on each chromosome 17. We have demonstrated that failure to recognize the molecular duplication can lead to misinterpretation of marker genotypes for affected individuals, identification of false recombinants, and incorrect localization of the disease locus.


Nature Genetics | 2009

Genome-wide association study of blood pressure and hypertension

Daniel Levy; Georg B. Ehret; Kenneth Rice; Germaine C. Verwoert; Lenore J. Launer; Abbas Dehghan; Nicole L. Glazer; Alanna C. Morrison; Andrew D. Johnson; Thor Aspelund; Yurii S. Aulchenko; Thomas Lumley; Anna Köttgen; Fernando Rivadeneira; Gudny Eiriksdottir; Xiuqing Guo; Dan E. Arking; Gary F. Mitchell; Francesco Mattace-Raso; Albert V. Smith; Kent D. Taylor; Robert B. Scharpf; Shih Jen Hwang; Eric J.G. Sijbrands; Joshua C. Bis; Tamara B. Harris; Santhi K. Ganesh; Christopher J. O'Donnell; Albert Hofman; Jerome I. Rotter

Blood pressure is a major cardiovascular disease risk factor. To date, few variants associated with interindividual blood pressure variation have been identified and replicated. Here we report results of a genome-wide association study of systolic (SBP) and diastolic (DBP) blood pressure and hypertension in the CHARGE Consortium (n = 29,136), identifying 13 SNPs for SBP, 20 for DBP and 10 for hypertension at P < 4 × 10−7. The top ten loci for SBP and DBP were incorporated into a risk score; mean BP and prevalence of hypertension increased in relation to the number of risk alleles carried. When ten CHARGE SNPs for each trait were included in a joint meta-analysis with the Global BPgen Consortium (n = 34,433), four CHARGE loci attained genome-wide significance (P < 5 × 10−8) for SBP (ATP2B1, CYP17A1, PLEKHA7, SH2B3), six for DBP (ATP2B1, CACNB2, CSK-ULK3, SH2B3, TBX3-TBX5, ULK4) and one for hypertension (ATP2B1). Identifying genes associated with blood pressure advances our understanding of blood pressure regulation and highlights potential drug targets for the prevention or treatment of hypertension.


Nature Genetics | 1999

Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis

Marc K. Halushka; Jian Bing Fan; Kimberly Bentley; Linda Hsie; Naiping Shen; Alan B. Weder; Richard S. Cooper; Robert J. Lipshutz; Aravinda Chakravarti

Sequence variation in human genes is largely confined to single-nucleotide polymorphisms (SNPs) and is valuable in tests of association with common diseases and pharmacogenetic traits. We performed a systematic and comprehensive survey of molecular variation to assess the nature, pattern and frequency of SNPs in 75 candidate human genes for blood-pressure homeostasis and hypertension. We assayed 28 Mb (190 kb in 148 alleles) of genomic sequence, comprising the 5´ and 3´ untranslated regions (UTRs), introns and coding sequence of these genes, for sequence differences in individuals of African and Northern European descent using high-density variant detection arrays (VDAs). We identified 874 candidate human SNPs, of which 22% were confirmed by DNA sequencing to reveal a discordancy rate of 21% for VDA detection. The SNPs detected have an average minor allele frequency of 11%, and 387 are within the coding sequence (cSNPs). Of all cSNPs, 54% lead to a predicted change in the protein sequence, implying a high level of human protein diversity. These protein-altering SNPs are 38% of the total number of such SNPs expected, are more likely to be population-specific and are rarer in the human population, directly demonstrating the effects of natural selection on human genes. Overall, the degree of nucleotide polymorphism across these human genes, and orthologous great ape sequences, is highly variable and is correlated with the effects of functional conservation on gene sequences.


Cell | 1994

A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease

Erik G. Puffenberger; Kiminori Hosoda; Sarah S. Washington; Kazuwa Nakao; Damiane deWit; Masashi Yanagisawa; Aravinda Chakravarti

Hirschsprungs disease (HSCR) is characterized by an absence of enteric ganglia in the distal colon and a failure of innervation in the gastrointestinal tract. We recently mapped a recessive susceptibility locus (HSCR2) to human chromosome 13q22, which we now demonstrate to be the endothelin-B receptor gene (EDNRB). We identified in HSCR patients a G-->T missense mutation in EDNRB exon 4 that substitutes the highly conserved Trp-276 residue in the fifth transmembrane helix of the G protein-coupled receptor with a Cys residue (W276C). The mutant W276C receptor exhibited a partial impairment of ligand-induced Ca2+ transient levels in transfected cells. The mutation is dosage sensitive, in that W276C homozygotes and heterozygotes have a 74% and a 21% risk, respectively, of developing HSCR. Genotype analysis of patients in a Mennonite pedigree shows HSCR to be a multigenic disorder.


Nature | 2003

Comparative analyses of multi-species sequences from targeted genomic regions

James W. Thomas; Jeffrey W. Touchman; Robert W. Blakesley; Gerard G. Bouffard; Stephen M. Beckstrom-Sternberg; Elliott H. Margulies; Mathieu Blanchette; Adam Siepel; Pamela J. Thomas; Jennifer C. McDowell; Baishali Maskeri; Nancy F. Hansen; M. Schwartz; Ryan Weber; William Kent; Donna Karolchik; T. C. Bruen; R. Bevan; David J. Cutler; Scott Schwartz; Laura Elnitski; Jacquelyn R. Idol; A. B. Prasad; S. Q. Lee-Lin; Valerie Maduro; T. J. Summers; Matthew E. Portnoy; Nicole Dietrich; N. Akhter; K. Ayele

The systematic comparison of genomic sequences from different organisms represents a central focus of contemporary genome analysis. Comparative analyses of vertebrate sequences can identify coding and conserved non-coding regions, including regulatory elements, and provide insight into the forces that have rendered modern-day genomes. As a complement to whole-genome sequencing efforts, we are sequencing and comparing targeted genomic regions in multiple, evolutionarily diverse vertebrates. Here we report the generation and analysis of over 12 megabases (Mb) of sequence from 12 species, all derived from the genomic region orthologous to a segment of about 1.8 Mb on human chromosome 7 containing ten genes, including the gene mutated in cystic fibrosis. These sequences show conservation reflecting both functional constraints and the neutral mutational events that shaped this genomic region. In particular, we identify substantial numbers of conserved non-coding segments beyond those previously identified experimentally, most of which are not detectable by pair-wise sequence comparisons alone. Analysis of transposable element insertions highlights the variation in genome dynamics among these species and confirms the placement of rodents as a sister group to the primates.


Nature Genetics | 2005

Genomic alterations in cultured human embryonic stem cells

Anirban Maitra; Dan E. Arking; Narayan Shivapurkar; Morna Ikeda; Victor Stastny; Keyaunoosh Kassauei; Guoping Sui; David J. Cutler; Ying Liu; Sandii N. Brimble; Karin Noaksson; Johan Hyllner; Thomas C. Schulz; Xianmin Zeng; William J. Freed; Jeremy M. Crook; Suman Abraham; Alan Colman; Peter Sartipy; Sei Ichi Matsui; Melissa K. Carpenter; Adi F. Gazdar; Mahendra S. Rao; Aravinda Chakravarti

Cultured human embryonic stem cell (hESC) lines are an invaluable resource because they provide a uniform and stable genetic system for functional analyses and therapeutic applications. Nevertheless, these dividing cells, like other cells, probably undergo spontaneous mutation at a rate of 10−9 per nucleotide. Because each mutant has only a few progeny, the overall biological properties of the cell culture are not altered unless a mutation provides a survival or growth advantage. Clonal evolution that leads to emergence of a dominant mutant genotype may potentially affect cellular phenotype as well. We assessed the genomic fidelity of paired early- and late-passage hESC lines in the course of tissue culture. Relative to early-passage lines, eight of nine late-passage hESC lines had one or more genomic alterations commonly observed in human cancers, including aberrations in copy number (45%), mitochondrial DNA sequence (22%) and gene promoter methylation (90%), although the latter was essentially restricted to 2 of 14 promoters examined. The observation that hESC lines maintained in vitro develop genetic and epigenetic alterations implies that periodic monitoring of these lines will be required before they are used in in vivo applications and that some late-passage hESC lines may be unusable for therapeutic purposes.


Nature Genetics | 1999

Population genetics-making sense out of sequence

Aravinda Chakravarti

The complete human genome nucleotide sequence and technologies for assessing sequence variation on a genome–scale will prompt comprehensive studies of comparative genomic diversity in human populations across the globe. These studies, besides rejuvenating population genetics and our interest in how genetic variation is created and maintained, will provide the intellectual basis for understanding the genetic basis for complex diseases and traits.


American Journal of Human Genetics | 2008

A Common Genetic Variant in the Neurexin Superfamily Member CNTNAP2 Increases Familial Risk of Autism

Dan E. Arking; David J. Cutler; Camille W. Brune; Tanya M. Teslovich; Kristen West; Morna Ikeda; Alexis Rea; Moltu Guy; Shin Lin; Edwin H. Cook; Aravinda Chakravarti

Autism is a childhood neuropsychiatric disorder that, despite exhibiting high heritability, has largely eluded efforts to identify specific genetic variants underlying its etiology. We performed a two-stage genetic study in which genome-wide linkage and family-based association mapping was followed up by association and replication studies in an independent sample. We identified a common polymorphism in contactin-associated protein-like 2 (CNTNAP2), a member of the neurexin superfamily, that is significantly associated with autism susceptibility. Importantly, the genetic variant displays a parent-of-origin and gender effect recapitulating the inheritance of autism.


Nature Genetics | 2006

A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization

Dan E. Arking; Arne Pfeufer; Wendy S. Post; W.H. Linda Kao; Christopher Newton-Cheh; Morna Ikeda; Kristen West; Carl S. Kashuk; Mahmut Akyol; Siegfried Perz; Shapour Jalilzadeh; Thomas Illig; Christian Gieger; Chao Yu Guo; Martin G. Larson; H.-Erich Wichmann; Eduardo Marban; Christopher J. O'Donnell; Joel N. Hirschhorn; Stefan Kääb; Peter M. Spooner; Thomas Meitinger; Aravinda Chakravarti

Extremes of the electrocardiographic QT interval, a measure of cardiac repolarization, are associated with increased cardiovascular mortality. We identified a common genetic variant influencing this quantitative trait through a genome-wide association study on 200 subjects at the extremes of a population-based QT interval distribution of 3,966 subjects from the KORA cohort in Germany, with follow-up screening of selected markers in the remainder of the cohort. We validated statistically significant findings in two independent samples of 2,646 subjects from Germany and 1,805 subjects from the US Framingham Heart Study. This genome-wide study identified NOS1AP (CAPON), a regulator of neuronal nitric oxide synthase, as a new target that modulates cardiac repolarization. Approximately 60% of subjects of European ancestry carry at least one minor allele of the NOS1AP genetic variant, which explains up to 1.5% of QT interval variation.

Collaboration


Dive into the Aravinda Chakravarti's collaboration.

Top Co-Authors

Avatar

Dan E. Arking

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Eric Boerwinkle

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alanna C. Morrison

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce M. Psaty

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge