Araxi O. Urrutia
University of Bath
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Araxi O. Urrutia.
Nature Genetics | 2002
Martin J. Lercher; Araxi O. Urrutia; Laurence D. Hurst
It is often supposed that, except for tandem duplicates, genes are randomly distributed throughout the human genome. However, recent analyses suggest that when all the genes expressed in a given tissue (notably placenta and skeletal muscle) are examined, these genes do not map to random locations but instead resolve to clusters. We have asked three questions: (i) is this clustering true for most tissues, or are these the exceptions; (ii) is any clustering simply the result of the expression of tandem duplicates and (iii) how, if at all, does this relate to the observed clustering of genes with high expression rates? We provide a unified model of gene clustering that explains the previous observations. We examined Serial Analysis of Gene Expression (SAGE) data for 14 tissues and found significant clustering, in each tissue, that persists even after the removal of tandem duplicates. We confirmed clustering by analysis of independent expressed-sequence tag (EST) data. We then tested the possibility that the human genome is organized into subregions, each specializing in genes needed in a given tissue. By comparing genes expressed in different tissues, we show that this is not the case: those genes that seem to be tissue-specific in their expression do not, as a rule, cluster. We report that genes that are expressed in most tissues (housekeeping genes) show strong clustering. In addition, we show that the apparent clustering of genes with high expression rates is a consequence of the clustering of housekeeping genes.
Nature | 2015
Sean R. Porazinski; Huijia Wang; Yoichi Asaoka; Martin Behrndt; Tatsuo Miyamoto; Hitoshi Morita; Shoji Hata; Takashi Sasaki; S.F. Gabriel Krens; Yumi Osada; Akihiro Momoi; Sarah Linton; Joel B. Miesfeld; Brian A. Link; Takeshi Senga; Atahualpa Castillo-Morales; Araxi O. Urrutia; Nobuyoshi Shimizu; Hideaki Nagase; Shinya Matsuura; Stefan Bagby; Hisato Kondoh; Hiroshi Nishina; Carl-Philipp Heisenberg; Makoto Furutani-Seiki
Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D’Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.
PLOS Biology | 2007
Joanna L. Parmley; Araxi O. Urrutia; Lukasz Potrzebowski; Henrik Kaessmann; Laurence D. Hurst
It is often supposed that a proteins rate of evolution and its amino acid content are determined by the function and anatomy of the protein. Here we examine an alternative possibility, namely that the requirement to specify in the unprocessed RNA, in the vicinity of intron–exon boundaries, information necessary for removal of introns (e.g., exonic splice enhancers) affects both amino acid usage and rates of protein evolution. We find that the majority of amino acids show skewed usage near intron–exon boundaries, and that differences in the trends for the 2-fold and 4-fold blocks of both arginine and leucine show this to be owing to effects mediated at the nucleotide level. More specifically, there is a robust relationship between the extent to which an amino acid is preferred/avoided near boundaries and its enrichment/paucity in splice enhancers. As might then be expected, the rate of evolution is lowest near intron–exon boundaries, at least in part owing to splice enhancers, such that domains flanking intron–exon junctions evolve on average at under half the rate of exon centres from the same gene. In contrast, the rate of evolution of intronless retrogenes is highest near the domains where intron–exon junctions previously resided. The proportion of sequence near intron–exon boundaries is one of the stronger predictors of a proteins rate of evolution in mammals yet described. We conclude that after intron insertion selection favours modification of amino acid content near intron–exon junctions, so as to enable efficient intron removal, these changes then being subject to strong purifying selection even if nonoptimal for protein function. Thus there exists a strong force operating on protein evolution in mammals that is not explained directly in terms of the biology of the protein.
Molecular Biology and Evolution | 2014
Lu Chen; Stephen J. Bush; Jaime M. Tovar-Corona; Atahualpa Castillo-Morales; Araxi O. Urrutia
What at the genomic level underlies organism complexity? Although several genomic features have been associated with organism complexity, in the case of alternative splicing, which has long been proposed to explain the variation in complexity, no such link has been established. Here, we analyzed over 39 million expressed sequence tags available for 47 eukaryotic species with fully sequenced genomes to obtain a comparable index of alternative splicing estimates, which corrects for the distorting effect of a variable number of transcripts per species—an important obstacle for comparative studies of alternative splicing. We find that alternative splicing has steadily increased over the last 1,400 My of eukaryotic evolution and is strongly associated with organism complexity, assayed as the number of cell types. Importantly, this association is not explained as a by-product of covariance between alternative splicing with other variables previously linked to complexity including gene content, protein length, proteome disorder, and protein interactivity. In addition, we found no evidence to suggest that the relationship of alternative splicing to cell type number is explained by drift due to reduced Ne in more complex species. Taken together, our results firmly establish alternative splicing as a significant predictor of organism complexity and are, in principle, consistent with an important role of transcript diversification through alternative splicing as a means of determining a genome’s functional information capacity.
International Journal of Evolutionary Biology | 2012
Lu Chen; Jaime M. Tovar-Corona; Araxi O. Urrutia
Alternative splicing (AS) is a common posttranscriptional process in eukaryotic organisms, by which multiple distinct functional transcripts are produced from a single gene. The release of the human genome draft revealed a much smaller number of genes than anticipated. Because of its potential role in expanding protein diversity, interest in alternative splicing has been increasing over the last decade. Although recent studies have shown that 94% human multiexon genes undergo AS, evolution of AS and thus its potential role in functional innovation in eukaryotic genomes remain largely unexplored. Here we review available evidence regarding the evolution of AS prevalence and functional role. In addition we stress the need to correct for the strong effect of transcript coverage in AS detection and set out a strategy to ultimately elucidate the extent of the role of AS in functional innovation on a genomic scale.
Genome Biology | 2008
Araxi O. Urrutia; Leandro Balladares Ocaña; Laurence D. Hurst
BackgroundOf all repetitive elements in the human genome, Alus are unusual in being enriched near to genes that are expressed across a broad range of tissues. This has led to the proposal that Alus might be modifying the expression breadth of neighboring genes, possibly by providing CpG islands, modifying transcription factor binding, or altering chromatin structure. Here we consider whether Alus have increased expression breadth of genes in their vicinity.ResultsContrary to the modification hypothesis, we find that those genes that have always had broad expression are richest in Alus, whereas those that are more likely to have become more broadly expressed have lower enrichment. This finding is consistent with a model in which Alus accumulate near broadly expressed genes but do not affect their expression breadth. Furthermore, this model is consistent with the finding that expression breadth of mouse genes predicts Alu density near their human orthologs. However, Alus were found to be related to some alternative measures of transcription profile divergence, although evidence is contradictory as to whether Alus associate with lowly or highly diverged genes. If Alu have any effect it is not by provision of CpG islands, because they are especially rare near to transcriptional start sites. Previously reported Alu enrichment for genes serving certain cellular functions, suggested to be evidence of functional importance of Alus, appears to be partly a byproduct of the association with broadly expressed genes.ConclusionThe abundance of Alu near broadly expressed genes is better explained by their preferential preservation near to housekeeping genes rather than by a modifying effect on expression of genes.
Human Molecular Genetics | 2011
Lu Chen; Jaime M. Tovar-Corona; Araxi O. Urrutia
Recent genome-wide analyses have detected numerous cancer-specific alternative splicing (AS) events. Whether transcripts containing cancer-specific AS events are likely to be translated into functional proteins or simply reflect noisy splicing, thereby determining their clinical relevance, is not known. Here we show that consistent with a noisy-splicing model, cancer-specific AS events generally tend to be rare, containing more premature stop codons and have less identifiable functional domains in both the human and mouse. Interestingly, common cancer-derived AS transcripts from tumour suppressor and oncogenes show marked changes in premature stop-codon frequency; with tumour suppressor genes exhibiting increased levels of premature stop codons whereas oncogenes have the opposite pattern. We conclude that tumours tend to have faithful oncogene splicing and a higher incidence of premature stop codons among tumour suppressor and cancer-specific splice variants showing the importance of considering splicing noise when analysing cancer-specific splicing changes.
Molecular Biology and Evolution | 2014
Stephen J. Bush; Atahualpa Castillo-Morales; Jaime M. Tovar-Corona; Lu Chen; Paula X. Kover; Araxi O. Urrutia
The sequencing of multiple genomes of the same plant species has revealed polymorphic gene and exon loss. Genes associated with disease resistance are overrepresented among those showing structural variations, suggesting an adaptive role for gene and exon presence–absence variation (PAV). To shed light on the possible functional relevance of polymorphic coding region loss and the mechanisms driving this process, we characterized genes that have lost entire exons or their whole coding regions in 17 fully sequenced Arabidopsis thaliana accessions. We found that although a significant enrichment in genes associated with certain functional categories is observed, PAV events are largely restricted to genes with signatures of reduced essentiality: PAV genes tend to be newer additions to the genome, tissue specific, and lowly expressed. In addition, PAV genes are located in regions of lower gene density and higher transposable element density. Partial coding region PAV events were associated with only a marginal reduction in gene expression level in the affected accession and occurred in genes with higher levels of alternative splicing in the Col-0 accession. Together, these results suggest that although adaptive scenarios cannot be ruled out, PAV events can be explained without invoking them.
Philosophical Transactions of the Royal Society B | 2017
Stephen J. Bush; Lu Chen; Jaime M. Tovar-Corona; Araxi O. Urrutia
Alternative splicing, a mechanism of post-transcriptional RNA processing whereby a single gene can encode multiple distinct transcripts, has been proposed to underlie morphological innovations in multicellular organisms. Genes with developmental functions are enriched for alternative splicing events, suggestive of a contribution of alternative splicing to developmental programmes. The role of alternative splicing as a source of transcript diversification has previously been compared to that of gene duplication, with the relationship between the two extensively explored. Alternative splicing is reduced following gene duplication with the retention of duplicate copies higher for genes which were alternatively spliced prior to duplication. Furthermore, and unlike the case for overall gene number, the proportion of alternatively spliced genes has also increased in line with the evolutionary diversification of cell types, suggesting alternative splicing may contribute to the complexity of developmental programmes. Together these observations suggest a prominent role for alternative splicing as a source of functional innovation. However, it is unknown whether the proliferation of alternative splicing events indeed reflects a functional expansion of the transcriptome or instead results from weaker selection acting on larger species, which tend to have a higher number of cell types and lower population sizes. This article is part of the themed issue ‘Evo-devo in the genomics era, and the origins of morphological diversity’.
Molecular Ecology Resources | 2016
Nina F. Ockendon; Lauren A. O'Connell; Stephen J. Bush; Jimena Monzón-Sandoval; Holly Barnes; Tamás Székely; Hans A. Hofmann; Steve Dorus; Araxi O. Urrutia
Next‐generation sequencing methods, such as RNA‐seq, have permitted the exploration of gene expression in a range of organisms which have been studied in ecological contexts but lack a sequenced genome. However, the efficacy and accuracy of RNA‐seq annotation methods using reference genomes from related species have yet to be robustly characterized. Here we conduct a comprehensive power analysis employing RNA‐seq data from Drosophila melanogaster in conjunction with 11 additional genomes from related Drosophila species to compare annotation methods and quantify the impact of evolutionary divergence between transcriptome and the reference genome. Our analyses demonstrate that, regardless of the level of sequence divergence, direct genome mapping (DGM), where transcript short reads are aligned directly to the reference genome, significantly outperforms the widely used de novo and guided assembly‐based methods in both the quantity and accuracy of gene detection. Our analysis also reveals that DGM recovers a more representative profile of Gene Ontology functional categories, which are often used to interpret emergent patterns in genomewide expression analyses. Lastly, analysis of available primate RNA‐seq data demonstrates the applicability of our observations across diverse taxa. Our quantification of annotation accuracy and reduced gene detection associated with sequence divergence thus provides empirically derived guidelines for the design of future gene expression studies in species without sequenced genomes.