Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Archana Tomar is active.

Publication


Featured researches published by Archana Tomar.


G3: Genes, Genomes, Genetics | 2013

Large Scale Full-Length cDNA Sequencing Reveals a Unique Genomic Landscape in a Lepidopteran Model Insect, Bombyx mori

Yoshitaka Suetsugu; Ryo Futahashi; Hiroyuki Kanamori; Keiko Kadono-Okuda; Shun-ichi Sasanuma; Junko Narukawa; Masahiro Ajimura; Akiya Jouraku; Nobukazu Namiki; Michihiko Shimomura; Hideki Sezutsu; Mizuko Osanai-Futahashi; Masataka G. Suzuki; Takaaki Daimon; Tetsuro Shinoda; Kiyoko Taniai; Kiyoshi Asaoka; Ryusuke Niwa; Shinpei Kawaoka; Susumu Katsuma; Toshiki Tamura; Hiroaki Noda; Masahiro Kasahara; Sumio Sugano; Yutaka Suzuki; Haruhiko Fujiwara; Hiroshi Kataoka; Kallare P. Arunkumar; Archana Tomar; Javaregowda Nagaraju

The establishment of a complete genomic sequence of silkworm, the model species of Lepidoptera, laid a foundation for its functional genomics. A more complete annotation of the genome will benefit functional and comparative studies and accelerate extensive industrial applications for this insect. To realize these goals, we embarked upon a large-scale full-length cDNA collection from 21 full-length cDNA libraries derived from 14 tissues of the domesticated silkworm and performed full sequencing by primer walking for 11,104 full-length cDNAs. The large average intron size was 1904 bp, resulting from a high accumulation of transposons. Using gene models predicted by GLEAN and published mRNAs, we identified 16,823 gene loci on the silkworm genome assembly. Orthology analysis of 153 species, including 11 insects, revealed that among three Lepidoptera including Monarch and Heliconius butterflies, the 403 largest silkworm-specific genes were composed mainly of protective immunity, hormone-related, and characteristic structural proteins. Analysis of testis-/ovary-specific genes revealed distinctive features of sexual dimorphism, including depletion of ovary-specific genes on the Z chromosome in contrast to an enrichment of testis-specific genes. More than 40% of genes expressed in specific tissues mapped in tissue-specific chromosomal clusters. The newly obtained FL-cDNA sequences enabled us to annotate the genome of this lepidopteran model insect more accurately, enhancing genomic and functional studies of Lepidoptera and comparative analyses with other insect orders, and yielding new insights into the evolution and organization of lepidopteran-specific genes.


Nucleic Acids Research | 2011

Role of sequence encoded κB DNA geometry in gene regulation by Dorsal

Nirotpal Mrinal; Archana Tomar; Javaregowda Nagaraju

Many proteins of the Rel family can act as both transcriptional activators and repressors. However, mechanism that discerns the ‘activator/repressor’ functions of Rel-proteins such as Dorsal (Drosophila homologue of mammalian NFκB) is not understood. Using genomic, biophysical and biochemical approaches, we demonstrate that the underlying principle of this functional specificity lies in the ‘sequence-encoded structure’ of the κB-DNA. We show that Dorsal-binding motifs exist in distinct activator and repressor conformations. Molecular dynamics of DNA-Dorsal complexes revealed that repressor κB-motifs typically have A-tract and flexible conformation that facilitates interaction with co-repressors. Deformable structure of repressor motifs, is due to changes in the hydrogen bonding in A:T pair in the ‘A-tract’ core. The sixth nucleotide in the nonameric κB-motif, ‘A’ (A6) in the repressor motifs and ‘T’ (T6) in the activator motifs, is critical to confer this functional specificity as A6 → T6 mutation transformed flexible repressor conformation into a rigid activator conformation. These results highlight that ‘sequence encoded κB DNA-geometry’ regulates gene expression by exerting allosteric effect on binding of Rel proteins which in turn regulates interaction with co-regulators. Further, we identified and characterized putative repressor motifs in Dl-target genes, which can potentially aid in functional annotation of Dorsal gene regulatory network.


International Journal of Molecular Sciences | 2012

Pyrosequencing-Based Transcriptome Analysis of the Asian Rice Gall Midge Reveals Differential Response during Compatible and Incompatible Interaction

Deepak Kumar Sinha; Javaregowda Nagaraju; Archana Tomar; J. S. Bentur; Suresh Nair

The Asian rice gall midge (Orseolia oryzae) is a major pest responsible for immense loss in rice productivity. Currently, very little knowledge exists with regard to this insect at the molecular level. The present study was initiated with the aim of developing molecular resources as well as identifying alterations at the transcriptome level in the gall midge maggots that are in a compatible (SH) or in an incompatible interaction (RH) with their rice host. Roche 454 pyrosequencing strategy was used to develop both transcriptomics and genomics resources that led to the identification of 79,028 and 85,395 EST sequences from gall midge biotype 4 (GMB4) maggots feeding on a susceptible and resistant rice variety, TN1 (SH) and Suraksha (RH), respectively. Comparative transcriptome analysis of the maggots in SH and RH revealed over-representation of transcripts from proteolysis and protein phosphorylation in maggots from RH. In contrast, over-representation of transcripts for translation, regulation of transcription and transcripts involved in electron transport chain were observed in maggots from SH. This investigation, besides unveiling various mechanisms underlying insect-plant interactions, will also lead to a better understanding of strategies adopted by insects in general, and the Asian rice gall midge in particular, to overcome host defense.


PLOS Pathogens | 2016

Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas

Sheo Shankar Pandey; Pradeep Kumar Patnana; Santosh Kumar Lomada; Archana Tomar; Subhadeep Chatterjee

Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named X anthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon’s involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in response to iron availability. Our results provide insight of the complex regulatory mechanism of fine-tuning of virulence associated functions with iron availability in this important group of phytopathogen.


Virulence | 2017

Disruption of tetR type regulator adeN by mobile genetic element confers elevated virulence in Acinetobacter baumannii

Rajagopalan Saranathan; Sudhakar Pagal; Ajit R Sawant; Archana Tomar; M Madhangi; Suresh Sah; Annapurna Satti; Kallare P. Arunkumar; K Prashanth

ABSTRACT Acinetobacter baumannii is an important human pathogen and considered as a major threat due to its extreme drug resistance. In this study, the genome of a hyper-virulent MDR strain PKAB07 of A. baumannii isolated from an Indian patient was sequenced and analyzed to understand its mechanisms of virulence, resistance and evolution. Comparative genome analysis of PKAB07 revealed virulence and resistance related genes scattered throughout the genome, instead of being organized as an island, indicating the highly mosaic nature of the genome. Many intermittent horizontal gene transfer events, insertion sequence (IS) element insertions identified were augmenting resistance machinery and elevating the SNP densities in A. baumannii eventually aiding in their swift evolution. ISAba1, the most widely distributed insertion sequence in A. baumannii was found in multiple sites in PKAB07. Out of many ISAba1 insertions, we identified novel insertions in 9 different genes wherein insertional inactivation of adeN (tetR type regulator) was significant. To assess the significance of this disruption in A. baumannii, adeN mutant and complement strains were constructed in A. baumannii ATCC 17978 strain and studied. Biofilm levels were abrogated in the adeN knockout when compared with the wild type and complemented strain of adeN knockout. Virulence of the adeN knockout mutant strain was observed to be high, which was validated by in vitro experiments and Galleria mellonella infection model. The overexpression of adeJ, a major component of AdeIJK efflux pump observed in adeN knockout strain could be the possible reason for the elevated virulence in adeN mutant and PKB07 strain. Knocking out of adeN in ATCC strain led to increased resistance and virulence at par with the PKAB07. Disruption of tetR type regulator adeN by ISAba1 consequently has led to elevated virulence in this pathogen.


PLOS ONE | 2014

De novo assembly and transcriptome analysis of the Mediterranean fruit fly Ceratitis capitata early embryos.

Marco Salvemini; Kallare P. Arunkumar; Javaregowda Nagaraju; Remo Sanges; Valeria Petrella; Archana Tomar; Hongyu Zhang; Weiwei Zheng; Giuseppe Saccone

The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, belongs to the Tephritidae family, which includes a large number of other damaging pest species. The Medfly has been the first non-drosophilid fly species which has been genetically transformed paving the way for designing genetic-based pest control strategies. Furthermore, it is an experimentally tractable model, in which transient and transgene-mediated RNAi have been successfully used. We applied Illumina sequencing to total RNA preparations of 8–10 hours old embryos of C. capitata, This developmental window corresponds to the blastoderm cellularization stage. In summary, we assembled 42,614 transcripts which cluster in 26,319 unique transcripts of which 11,045 correspond to protein coding genes; we identified several hundreds of long ncRNAs; we found an enrichment of transcripts encoding RNA binding proteins among the highly expressed transcripts, such as CcTRA-2, known to be necessary to establish and, most likely, to maintain female sex of C. capitata. Our study is the first de novo assembly performed for Ceratitis capitata based on Illumina NGS technology during embryogenesis and it adds novel data to the previously published C. capitata EST databases. We expect that it will be useful for a variety of applications such as gene cloning and phylogenetic analyses, as well as to advance genetic research and biotechnological applications in the Medfly and other related Tephritidae.


Genome Announcements | 2014

Draft Genome Sequence of a Multidrug-Resistant Acinetobacter baumannii PKAB07 Clinical Strain from India Belonging to Sequence Type 195

Rajagopalan Saranathan; Archana Tomar; Pagal Sudhakar; Kallare P. Arunkumar; K Prashanth

ABSTRACT Acinetobacter baumannii has emerged as one of the most common nosocomial pathogens and is considered to be a significant threat to public health worldwide. Here, we present the draft genome sequence of a multidrug-resistant clinical strain of A. baumannii PKAB07 isolated from a wound infection in India during 2011 to 2012.


Royal Society Open Science | 2017

Correction to ‘RNA sequencing reveals a complete but an unconventional type of dosage compensation in the domestic silkworm Bombyx mori’

Gajula Gopinath; Kuchi Srikeerthana; Archana Tomar; Srikakolapu M. Ch. Sekhar; Kallare P. Arunkumar

[This corrects the article DOI: 10.1098/rsos.170261.].


Royal Society Open Science | 2017

RNA sequencing reveals a complete but an unconventional type of dosage compensation in the domestic silkworm Bombyx mori

Gajula Gopinath; Kuchi Srikeerthana; Archana Tomar; Srikakolapu M. Ch. Sekhar; Kallare P. Arunkumar

Sex chromosomal dose difference between sexes is often normalized by a gene regulatory mechanism called dosage compensation (DC). Studies indicate that DC mechanisms are generally effective in XY rather than ZW systems. However, DC studies in lepidopterans (ZW system) gave bewildering results. In Manduca sexta, DC was complete and in Plodia interpunctella, it was incomplete. In Heliconius species, dosage was found to be partly incomplete. In domesticated silkmoth Bombyx mori, DC studies have yielded contradictory results thus far, showing incomplete DC based on microarray data and a possible existence of DC based on recent reanalysis of same data. In this study, analysis of B. mori sexed embryos (78, 96 and 120 h) and larval heads using RNA sequencing suggest an onset of DC at 120 h. The average Z-linked expression is substantially less than autosomes, and the male-biased Z-linked expression observed at initial stages (78 and 96 h) gets almost compensated at 120 h embryonic stage and perfectly compensated in heads. Based on these findings, we suggest a complete but an unconventional type of DC, which may be achieved by reduced Z-linked expression in males (ZZ). To our knowledge, this is the first next-generation sequencing report showing DC in B. mori, clarifying the previous contradictions.


BMC Genomics | 2008

WildSilkbase: An EST database of wild silkmoths

Kallare P. Arunkumar; Archana Tomar; Takaaki Daimon; Toru Shimada; Javaregowda Nagaraju

Collaboration


Dive into the Archana Tomar's collaboration.

Top Co-Authors

Avatar

Kallare P. Arunkumar

Centre for DNA Fingerprinting and Diagnostics

View shared research outputs
Top Co-Authors

Avatar

Javaregowda Nagaraju

Centre for DNA Fingerprinting and Diagnostics

View shared research outputs
Top Co-Authors

Avatar

Gajula Gopinath

Centre for DNA Fingerprinting and Diagnostics

View shared research outputs
Top Co-Authors

Avatar

K Prashanth

Pondicherry University

View shared research outputs
Top Co-Authors

Avatar

Kuchi Srikeerthana

Centre for DNA Fingerprinting and Diagnostics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Srikakolapu M. Ch. Sekhar

Centre for DNA Fingerprinting and Diagnostics

View shared research outputs
Top Co-Authors

Avatar

Akiya Jouraku

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge