Ardalan Armin
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ardalan Armin.
Nature Communications | 2015
Ardalan Armin; Ross D. Jansen-van Vuuren; Nikos Kopidakis; Paul L. Burn; Paul Meredith
Spectrally selective light detection is vital for full-colour and near-infrared (NIR) imaging and machine vision. This is not possible with traditional broadband-absorbing inorganic semiconductors without input filtering, and is yet to be achieved for narrowband absorbing organic semiconductors. We demonstrate the first sub-100 nm full-width-at-half-maximum visible-blind red and NIR photodetectors with state-of-the-art performance across critical response metrics. These devices are based on organic photodiodes with optically thick junctions. Paradoxically, we use broadband-absorbing organic semiconductors and utilize the electro-optical properties of the junction to create the narrowest NIR-band photoresponses yet demonstrated. In this context, these photodiodes outperform the encumbent technology (input filtered inorganic semiconductor diodes) and emerging technologies such as narrow absorber organic semiconductors or quantum nanocrystals. The design concept allows for response tuning and is generic for other spectral windows. Furthermore, it is material-agnostic and applicable to other disordered and polycrystalline semiconductors.
Advanced Materials | 2015
Qianqian Lin; Ardalan Armin; Dani M. Lyons; Paul L. Burn; Paul Meredith
Solution-processed organohalide perov-skite photodiodes that have performance metrics matching silicon, but are infrared-blind are reported. The perovskite photodiodes operate in the visible band, have low dark current and noise, high specific detectivity, large linear dynamic range, and fast temporal response. Their properties make them promising candidates for imaging applications.
Advanced Materials | 2016
Ross D. Jansen-van Vuuren; Ardalan Armin; Ajay K. Pandey; Paul L. Burn; Paul Meredith
Major growth in the image sensor market is largely as a result of the expansion of digital imaging into cameras, whether stand-alone or integrated within smart cellular phones or automotive vehicles. Applications in biomedicine, education, environmental monitoring, optical communications, pharmaceutics and machine vision are also driving the development of imaging technologies. Organic photodiodes (OPDs) are now being investigated for existing imaging technologies, as their properties make them interesting candidates for these applications. OPDs offer cheaper processing methods, devices that are light, flexible and compatible with large (or small) areas, and the ability to tune the photophysical and optoelectronic properties - both at a material and device level. Although the concept of OPDs has been around for some time, it is only relatively recently that significant progress has been made, with their performance now reaching the point that they are beginning to rival their inorganic counterparts in a number of performance criteria including the linear dynamic range, detectivity, and color selectivity. This review covers the progress made in the OPD field, describing their development as well as the challenges and opportunities.
Journal of the American Chemical Society | 2014
Ardalan Armin; Ivan Kassal; Paul E. Shaw; Mike Hambsch; Martin Stolterfoht; Dani M. Lyons; Jun Li; Zugui Shi; Paul L. Burn; Paul Meredith
The conventional picture of photocurrent generation in organic solar cells involves photoexcitation of the electron donor, followed by electron transfer to the acceptor via an interfacial charge-transfer state (Channel I). It has been shown that the mirror-image process of acceptor photoexcitation leading to hole transfer to the donor is also an efficient means to generate photocurrent (Channel II). The donor and acceptor components may have overlapping or distinct absorption characteristics. Hence, different excitation wavelengths may preferentially activate one channel or the other, or indeed both. As such, the internal quantum efficiency (IQE) of the solar cell may likewise depend on the excitation wavelength. We show that several model high-efficiency organic solar cell blends, notably PCDTBT:PC70BM and PCPDTBT:PC60/70BM, exhibit flat IQEs across the visible spectrum, suggesting that charge generation is occurring either via a dominant single channel or via both channels but with comparable efficiencies. In contrast, blends of the narrow optical gap copolymer DPP-DTT with PC70BM show two distinct spectrally flat regions in their IQEs, consistent with the two channels operating at different efficiencies. The observed energy dependence of the IQE can be successfully modeled as two parallel photodiodes, each with its own energetics and exciton dynamics but both having the same extraction efficiency. Hence, an excitation-energy dependence of the IQE in this case can be explained as the interplay between two photocurrent-generating channels, without recourse to hot excitons or other exotic processes.
Scientific Reports | 2015
Martin Stolterfoht; Ardalan Armin; Bronson Philippa; Ronald White; Paul L. Burn; Paul Meredith; Gytis Juška; Almantas Pivrikas
Light harvesting systems based upon disordered materials are not only widespread in nature, but are also increasingly prevalent in solar cells and photodetectors. Examples include organic semiconductors, which typically possess low charge carrier mobilities and Langevin-type recombination dynamics – both of which negatively impact the device performance. It is accepted wisdom that the “drift distance” (i.e., the distance a photocarrier drifts before recombination) is defined by the mobility-lifetime product in solar cells. We demonstrate that this traditional figure of merit is inadequate for describing the charge transport physics of organic light harvesting systems. It is experimentally shown that the onset of the photocarrier recombination is determined by the electrode charge and we propose the mobility-recombination coefficient product as an alternative figure of merit. The implications of these findings are relevant to a wide range of light harvesting systems and will necessitate a rethink of the critical parameters of charge transport.
Applied Physics Letters | 2012
Ardalan Armin; Marrapan Velusamy; Paul L. Burn; Paul Meredith; Almantas Pivrikas
We present a technique called “injected charge extraction by linearly increasing voltage” (i-CELIV) and apply it to evaluate bimolecular recombination in organic solar cells. The experimental setup is straightforward requiring no laser or optical-electrical pulse synchronization. The applicability of the method is discussed and non-Langevin recombination in a model poly(3-n-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PC60BM) solar cell is quantified and confirmed. Further, Langevin recombination in the low optical gap high efficiency blend, poly[2,6-(4,4-bis-{2-ethylhexyl}-4H-cyclopenta[2,1-b;3,4-b′]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]:phenyl-C71-butyric acid methyl ester is reported using i-CELIV.
Nature Materials | 2013
Ardalan Armin; Yuliang Zhang; Paul L. Burn; Paul Meredith; Almantas Pivrikas
really due to hot excitons? In this Correspondence we demonstrate that when interference and other optical effects are correctly accounted for, the apparent strong contribution from hot excitons is absent.Hot excitons are generated by photons with energies greater than the optical gap of organic semiconductors. It has been postulated this extra energy aids separation of bound electron–hole pairs (excitons), leading to an increase in the ‘charge generation yield’
Nature Communications | 2016
Martin Stolterfoht; Ardalan Armin; Safa Shoaee; Ivan Kassal; Paul L. Burn; Paul Meredith
Blends of electron-donating and -accepting organic semiconductors are widely used as photoactive materials in next-generation solar cells and photodetectors. The yield of free charges in these systems is often determined by the separation of interfacial electron–hole pairs, which is expected to depend on the ability of the faster carrier to escape the Coulomb potential. Here we show, by measuring geminate and non-geminate losses and key transport parameters in a series of bulk-heterojunction solar cells, that the charge-generation yield increases with increasing slower carrier mobility. This is in direct contrast with the well-established Braun model where the dissociation rate is proportional to the mobility sum, and recent models that underscore the importance of fullerene aggregation for coherent electron propagation. The behaviour is attributed to the restriction of opposite charges to different phases, and to an entropic contribution that favours the joint separation of both charge carriers.
Journal of Materials Chemistry | 2016
Mike Hambsch; Qianqian Lin; Ardalan Armin; Paul L. Burn; Paul Meredith
Solar cells based on organohalide perovskites (PSCs) have made rapid progress in recent years and are a promising emerging technology. An important next evolutionary step for PSCs is their up-scaling to commercially relevant dimensions. The main challenges in scaling PSCs to be compatible with current c-Si cells are related to the limited conductivity of the transparent electrode, and the processing of a uniform and defect-free organohalide perovskite layer over large areas. In this work we present a generic and simple approach to realizing efficient solution-processed, monolithic solar cells based on methylammonium lead iodide (CH3NH3PbI3). Our devices have an aperture area of 25 cm2 without relying on an interconnected strip design, therefore reducing the complexity of the fabrication process and enhancing compatibility with the c-Si cell geometry. We utilize simple aluminum grid lines to increase the conductivity of the transparent electrode. These grid lines were exposed to an UV-ozone plasma to grow a thin aluminum oxide layer. This dramatically improves the wetting and film forming of the organohalide perovskite junction on top of the lines, reducing the probability of short circuits between the grid and the top electrode. The best devices employing these modified grids achieved power conversion efficiencies of up to 6.8%.
Langmuir | 2014
Andrew J. Clulow; Ardalan Armin; Kwan H. Lee; Ajay K. Pandey; Chen Tao; Marappan Velusamy; Michael James; Andrew Nelson; Paul L. Burn; Ian R. Gentle; Paul Meredith
Fullerene derivatives are commonly used as electron acceptors in combination with (macro)molecular electron donors in bulk heterojunction (BHJ) organic photovoltaic (OPV) devices. Understanding the BHJ structure at different electron donor/acceptor ratios is critical to the continued improvement and development of OPVs. The high neutron scattering length densities (SLDs) of the fullerenes provide effective contrast for probing the distribution of the fullerene within the blend in a nondestructive way. However, recent neutron scattering studies on BHJ films have reported a wide range of SLDs ((3.6-4.4) × 10(-6) Å(-2)) for the fullerenes 60-PCBM and 70-PCBM, leading to differing interpretations of their distribution in thin films. In this article, we describe an approach for determining more precisely the scattering length densities of the fullerenes within a polymer matrix in order to accurately quantify their distribution within the active layers of OPV devices by neutron scattering techniques.