Arden L. Moore
Louisiana Tech University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arden L. Moore.
Science | 2010
Jae Hun Seol; Insun Jo; Arden L. Moore; Lucas Lindsay; Zachary H. Aitken; Michael T. Pettes; Xuesong Li; Zhen Yao; Rui Huang; David Broido; Natalio Mingo; Rodney S. Ruoff; Li Shi
Heat Flow in Graphene Unsupported graphene sheets show exceptional thermal transport properties, but are these properties maintained when a graphene sheet is in contact with a substrate? Seol et al. (p. 213; see the Perspective by Prasher) measured the thermal conductivity of graphene supported on silicon dioxide and found that, while the conductivity was considerably lower than that of free-standing graphene, it was still greater than that of metals such as copper. A theoretical model suggested that the out-of-plane flexing vibrations of the graphene play a key role in thermal transport. Thus, graphene may help in applications such as conducting heat away from electronic circuits. The thermal conductivity of graphene supported on silicon dioxide remains high, despite phonon scattering by the substrate. The reported thermal conductivity (κ) of suspended graphene, 3000 to 5000 watts per meter per kelvin, exceeds that of diamond and graphite. Thus, graphene can be useful in solving heat dissipation problems such as those in nanoelectronics. However, contact with a substrate could affect the thermal transport properties of graphene. Here, we show experimentally that κ of monolayer graphene exfoliated on a silicon dioxide support is still as high as about 600 watts per meter per kelvin near room temperature, exceeding those of metals such as copper. It is lower than that of suspended graphene because of phonons leaking across the graphene-support interface and strong interface-scattering of flexural modes, which make a large contribution to κ in suspended graphene according to a theoretical calculation.
Nano Letters | 2010
Weiwei Cai; Arden L. Moore; Yanwu Zhu; Xuesong Li; Shanshan Chen; Li Shi; Rodney S. Ruoff
Graphene monolayer has been grown by chemical vapor deposition on copper and then suspended over a hole. By measuring the laser heating and monitoring the Raman G peak, we obtain room-temperature thermal conductivity and interface conductance of (370 + 650/-320) W/m K and (28 + 16/-9.2) MW/m(2) K for the supported graphene. The thermal conductivity of the suspended graphene exceeds (2500 + 1100/-1050) W/m K near 350 K and becomes (1400 + 500/-480) W/m K at about 500 K.
ACS Nano | 2011
Shanshan Chen; Arden L. Moore; Weiwei Cai; Ji Won Suk; Jinho An; Columbia Mishra; Charles Amos; Carl W. Magnuson; Junyong Kang; Li Shi; Rodney S. Ruoff
Using micro-Raman spectroscopy, the thermal conductivity of a graphene monolayer grown by chemical vapor deposition and suspended over holes with different diameters ranging from 2.9 to 9.7 μm was measured in vacuum, thereby eliminating errors caused by heat loss to the surrounding gas. The obtained thermal conductivity values of the suspended graphene range from (2.6 ± 0.9) to (3.1 ± 1.0) × 10(3) Wm(-1)K(-1) near 350 K without showing the sample size dependence predicted for suspended, clean, and flat graphene crystal. The lack of sample size dependence is attributed to the relatively large measurement uncertainty as well as grain boundaries, wrinkles, defects, or polymeric residue that are possibly present in the measured samples. Moreover, from Raman measurements performed in air and CO(2) gas environments near atmospheric pressure, the heat transfer coefficient for air and CO(2) was determined and found to be (2.9 +5.1/-2.9) and (1.5 +4.2/-1.5) × 10(4) Wm(-2)K(-1), respectively, when the graphene temperature was heated by the Raman laser to about 510 K.
Applied Physics Letters | 2008
Arden L. Moore; Sanjoy K. Saha; Ravi Prasher; Li Shi
The effect of surface roughness on phonon transport in a nanowire has often been described by treating the surface as flat with a specularity parameter (p) in the range between 0 and 1. A lower thermal conductivity limit is approached at p=0 for diffuse surface. It is demonstrated here by Monte Carlo simulation that sawtooth roughness on a nanowire can cause phonon backscattering and suppress the thermal conductivity below the diffuse surface limit. The backscattering effect can be accounted for only by a negative p if the detail of the surface roughness is ignored.
Journal of Applied Physics | 2009
Anastassios Mavrokefalos; Arden L. Moore; Michael T. Pettes; Li Shi; Wei Wang; Xiaoguang Li
The thermoelectric properties and crystal structure of individual electrodeposited bismuth telluride nanowires (NWs) were characterized using a microfabricated measurement device and transmission electron microscopy. Annealing in hydrogen was used to obtain electrical contact between the NW and the supporting Pt electrodes. By fitting the measured Seebeck coefficient with a two-band model, the NW samples were determined to be highly n-type doped. Higher thermal conductivity and electrical conductivity were observed in a 52 nm diameter monocrystalline NW than a 55 nm diameter polycrystalline NW. The electron mobility of the monocrystalline NW was found to be about 19% lower than that of bulk crystal at a similar carrier concentration and about 2.5 times higher than that of the polycrystalline NW. The specularity parameter for electron scattering by the NW surface was determined to be about 0.7 and partially specular and partially diffuse, leading to a reduction in the electron mean-free path from 61 nm in ...
Journal of Applied Physics | 2007
Jae Hun Seol; Arden L. Moore; Sanjoy Saha; Feng Zhou; Li Shi; Qi Laura Ye; Raymond Scheffler; Natalio Mingo; Toshishige Yamada
It has been suggested by theoretical calculation that indium antimonide (InSb) nanowires can possess improved thermoelectric properties compared to the corresponding bulk crystal. Here we fabricated a device using electron beam lithography to measure the thermopower and electrical conductivity of an individual InSb nanowire grown using a vapor-liquid-solid method. The comparison between the measurement results and transport simulations reveals that the nanowire was unintentionally degenerately doped with donors. Better control of the impurity doping concentration can improve the thermoelectric properties.
Journal of Applied Physics | 2009
Arden L. Moore; Michael T. Pettes; Feng Zhou; Li Shi
The thermal conductivity of individual bismuth nanowires was characterized using a suspended microdevice and correlated with the crystal structure and growth direction obtained by transmission electron microscopy on the same nanowires. Compared to bulk bismuth in the same crystal direction perpendicular to the trigonal axis, the thermal conductivity of a single-crystal bismuth nanowire of 232 nm diameter was found to be three to six times smaller than bulk in the temperature range between 100 and 300 K, and those of polycrystalline bismuth nanowires of 74–255 nm diameter are reduced by factors of 18–78 over the same temperature range. The thermal conductivity suppression in the single-crystal nanowire can be explained by a transport model that considers diffuse phonon-surface scattering, partially diffuse surface scattering of electrons and holes, and scattering of phonons and charge carriers by ionized impurities such as oxygen and carbon of a concentration on the order of 1019 cm−3. The comparable therm...
Journal of Physics D | 2010
Feng Zhou; Arden L. Moore; Michael T. Pettes; Yong Lee; Jae Hun Seol; Qi Laura Ye; Lew Rabenberg; Li Shi
We report a study of the effect of the growth base pressure on the thermoelectric (TE) properties of indium antimonide (InSb) nanowires (NWs) synthesized using a vapour–liquid–solid method at different base pressures varying from ambient to high vacuum. A suspended device was used to characterize the TE properties of the NWs, which are zinc-blende structure with 1 1 0 growth direction based on transmission electron microscopy (TEM) characterization of the same NWs assembled on the suspended device. The obtained Seebeck coefficient is negative, with the magnitude being smaller than the literature bulk values and increasing with decreasing growth base pressure. These results are attributed to the loss of In from the source materials due to oxidation by residual oxygen in the growth environment and the consequent formation of Sb-doped NWs. The electron mobility and lattice thermal conductivity in the NWs are lower than the corresponding bulk values because of both surface scattering and stronger dopant scattering in the Sb-doped NWs. Based on these findings, it is suggested that growth from In-rich source materials can be used to achieve composition stoichiometry in the NWs so as to increase the Seebeck coefficient and TE figure of merit.
Measurement Science and Technology | 2011
Arden L. Moore; Li Shi
For micro-thermometer devices developed for thermal conductivity measurements of nanowires, it is found using finite element analysis that radiation heat transfer can cause nonlinear temperature profiles in the long supporting beams of the thermometers when the sample stage temperature is considerably higher or lower than room temperature. Although the nonlinearity alone does not introduce errors in the measured thermal conductance, it can cause errors in the measured temperature coefficient of resistance of the thermometers and needs to be minimized with additional radiation shields. For a design where the sample is supported on a silicon dioxide bridge between two micro-thermometers, the numerical analysis reveals that a two-dimensional temperature distribution can cause a 25% error in the sample thermal conductance obtained from a one-dimensional heat conduction analysis for a high-thermal-conductance thin film sample covering only the center part of the oxide bridge. This systematic error is reduced considerably for a low-thermal-conductance nanowire sample. However, care must be taken to ensure that the random uncertainties in the two measured thermal conductance values of the bridge with and without the nanowires are much smaller than the thermal conductance of the nanowires.
Biomacromolecules | 2014
Jairo A. Diaz; Zhijiang Ye; Xiawa Wu; Arden L. Moore; Robert J. Moon; Ashlie Martini; Dylan J. Boday; Jeffrey P. Youngblood
We achieved a multiscale description of the thermal conductivity of cellulose nanocrystals (CNCs) from single CNCs (∼0.72-5.7 W m(-1) K(-1)) to their organized nanostructured films (∼0.22-0.53 W m(-1) K(-1)) using experimental evidence and molecular dynamics (MD) simulation. The ratio of the approximate phonon mean free path (∼1.7-5.3 nm) to the lateral dimension of a single CNC (∼5-20 nm) suggested a contribution of crystal-crystal interfaces to polydisperse CNC films heat transport. Based on this, we modeled the thermal conductivity of CNC films using MD-predicted single crystal and interface properties along with the degree of CNC alignment in the bulk films using Hermans order parameter. Film thermal conductivities were strongly correlated to the degree of CNC alignment and the direction of heat flow relative to the CNC chain axis. The low interfacial barrier to heat transport found for CNCs (∼9.4 to 12.6 m(2) K GW(-1)), and their versatile alignment capabilities offer unique opportunities in thermal conductivity control.