Arden R. Bashforth
National Museum of Natural History
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arden R. Bashforth.
Journal of Paleontology | 2016
Arden R. Bashforth; William A. DiMichele; Cortland F. Eble; W. John Nelson
Abstract A macrofloral assemblage dominated by elements of the Euramerican dryland biome is described from the Brazil Formation in Clay County, Indiana (Illinois Basin). Fossils were recovered from a thin heterolithic unit between a shallow-marine bed and the paleosol beneath the Minshall Coal, a Middle Pennsylvanian succession deposited near the Atokan-Desmoinesian and Bolsovian-Asturian boundaries. Sedimentological indicators imply accumulation under a seasonal climate, including interbedded siltstone and sandstone deposited during flashfloods, intraclasts eroded from local sources, and charcoal produced by wildfires. The macrofloral assemblage is consistent with a dryland setting, being dominated by large, coriaceous gymnosperm leaves with mesic to xeric traits, including Cordaites spp. indet., Lesleya sp. indet., and Taeniopteris sp. cf. T. multinervia. Sphenopsids and ferns typical of the wetland biome are rare. In contrast, the microfloral assemblage is dominated by fern spores, with lesser lycopsid spores and cordaitalean pollen. The succession indicates that the dryland biome predominated during late regression, prior to the onset of perhumid conditions that resulted in peat accumulation at late lowstand. However, the abundance of palynomorphs from wetland vegetation implies gradual fragmentation of the prevailing dryland flora and replacement by the wetland biome in the transition to glacial maximum. The taphonomic and paleobiogeographic context confirms that floras adapted to seasonal moisture deficit periodically dispersed into tropical lowlands, rather than being transported from ‘extrabasinal’ or ‘upland’ environments. The precocious occurrence of Taeniopteris, more typical of Late Pennsylvanian and Permian floras, may be the earliest record of the fossil-genus, and exemplifies the association of derived plant taxa with dryland habitats. The predominance of broad-leaved gymnosperms with mesic to xeric characters suggests that dryland communities contained more slow-growing and long-lived plants than contemporaneous wetland floras.
Plant Systematics and Evolution | 2010
Marc Philippe; Gilles Cuny; Arden R. Bashforth
Fossil wood specimens from the late Early–early Middle Jurassic of Jameson Land, Eastern Greenland, have several unexpected features: tracheids of irregular size and shape, thinly pitted ray cell walls, heterogeneous rays, partially scalariform radial pitting, both areolate and simple pits, and pitted elements associated with rays. These characters diverge markedly from those typical of Jurassic wood, which usually conform to those of modern conifers. Although this combination of features is not encountered in any extant angiosperm, each has been documented in one or several extant homoxylous angiosperms, particularly Amborella, Trochodendron, and Tetracentron. As these wood specimens are not found in connection with any reproductive part, it is impossible to confidently assign them to the angiosperms. If a Jurassic angiosperm did exist, however, it might well have had a similar wood. This material is an early bench-mark in the evolution that led from homoxylous conifer-like wood to that of the angiosperms. Its particular biogeography (Arctic) could renew the discussion about the area of origin of the angiosperms.
Journal of the Geological Society | 2017
Neil S. Davies; Martin R. Gibling; William J. McMahon; Ben Slater; Darrel G.F. Long; Arden R. Bashforth; Christopher Mark Berry; Howard J. Falcon-Lang; Sanjeev Gupta; Michael C. Rygel; Charles H. Wellman
The first-order importance of tectonic and environmental controls for terrigenous sediment supply has rarely been questioned, but the role of vegetation in the modification of ancient alluvial signatures has been observed since the mid-20th century (Vogt 1941). Studies of sparsely vegetated rivers (Schumm 1968) and alluvial stratigraphic variation (Cotter 1978; Davies & Gibling 2010) led to observations of (1) plant modulation of alluvial signatures and (2) Palaeozoic facies shifts (PFS): unidirectional changes to facies diversity and frequency, in stratigraphic alliance with the plant fossil record. One PFS is the Siluro-Devonian appearance of mud-rich, architecturally complex alluvium, traditionally ascribed to meandering rivers, and sedimentologically distinct from pre-vegetation strata (Davies & Gibling 2010; Long 2011). Using selected secondary data, Santos et al. (2017) dispute the correlation of these observations using three key points, as follows. (1) The mid-Palaeozoic was typified by orogenic assembly of low-gradient equatorial continents and elevated sea-level, which led to tropical weathering (abundant fine sediment) and extensive alluvial plains. This drove the PFS by promoting river meandering independently of vegetation. (2) Meandering does not require vegetation; this is shown by examples in Precambrian deposits, on other planets, and in ‘non-vegetated’ deserts. Meandering rivers were more abundant than the pre-vegetation rock record suggests, owing to selective bypass and deflation of fine material. (3) Early Siluro-Devonian (meaning Ludlow–Early Devonian) land plants were too small, their biomass and cover too limited, and their wetland habitat too narrow to have stabilized meandering channels, influencing landscape little more than earlier microbial communities. We contest the conclusions and method of the paper, and deal with each point in turn.
Journal of Paleontology | 2016
Arden R. Bashforth; William A. DiMichele; Cortland F. Eble; W. John Nelson
Abstract. Taxonomic analysis is provided for a Middle Pennsylvanian macrofloral assemblage collected from clastic wetland deposits in Clay County, Indiana, on the eastern margin of the Illinois Basin. Adpressed plant fossils were recovered from four distinct beds in the lowermost Staunton Formation, positioned above the Minshall Coal (uppermost Brazil Formation), part of a succession deposited near the Atokan-Desmoinesian boundary. The assemblage of 22 fossil-taxa is dominated by pteridosperms (including Neuropteris flexuosa, Macroneuropteris scheuchzeri, Alethopteris densinervosa, Neuropteris ovata, Eusphenopteris neuropteroides, and Neuropteris missouriensis) with lesser cordaitaleans (Cordaites spp. indet.) and sphenopsids (particularly Sphenophyllum cuneifolium). Lycopsids are uncommon, and ferns are rare. In contrast, the microfloral assemblage from the Minshall Coal and overlying clastic units is dominated by lycopsid and tree fern spores. Comparisons with established biozonation schemes yield different ages depending on the regional biostratigraphic framework used: (1) latest Bolsovian (Radiizonates difformis Biozone, American microfloras); (2) latest Bolsovian or earliest Asturian (‘Neuropteris’ rarinervis Biozone, Appalachian Basin macrofloras); or (3) earliest Asturian (Linopteris obliqua Biozone, European macrofloras). The placement and correlation of the Bolsovian-Asturian and Atokan-Desmoinesian boundaries, which have traditionally been equated by palynology, are evaluated in the context of this discordance. Several revised stratigraphic scenarios are proposed for this interval in the Illinois Basin, which is being increasingly recognized as a time of significant environmental change throughout Euramerica. Homotaxial comparisons with European macrofloral assemblages indicate that, of the 18 biological taxa recorded, between 14 and 17 (78–94%) also are common in coeval wetland deposits in Europe. The similarities exemplify the spatial conservatism and low diversity of wetland plant communities over vast areas of tropical Euramerica, a manifestation of the intrinsically stressful conditions that characterize such habitats, and indicates that neither the Laurentian Shield nor the Appalachian-Variscan Mountains were an insurmountable barrier to plant dispersal during the Middle Pennsylvanian.
PALAIOS | 2015
Howard J. Falcon-Lang; Peir K. Pufahl; Arden R. Bashforth; Martin R. Gibling; Randall F. Miller; Nicholas J. Minter
Abstract We document the occurrence of a marine bed, and its associated biota, in the Lower Pennsylvanian (Langsettian) Tynemouth Creek Formation of New Brunswick, and discuss its implications for paleogeography, stratigraphy, and paleoecology. This is only the second marine interval found in the entire Pennsylvanian fill of the Maritimes Basin of Canada, the other being recently found in the broadly same-age Joggins Formation of Nova Scotia. Evidence for the new marine transgression comprises an echinoderm-rich limestone that infills irregularities on a vertic paleosol surface within the distal facies of a syntectonic fluvial megafan formed under a seasonally dry tropical climate. Gray, platy ostracod-rich shales and wave-rippled sandstone beds that directly overlie the marine limestone contain trace fossils characteristic of the Mermia Ichnofacies, upright woody trees, and adpressed megafloras. This association represents bay-fills fringed by freshwater coastal forests dominated by pteridosperms, cordaites, and other enigmatic plants traditionally attributed to dryland/upland habitats. The fossil site demonstrates that marine transgressions extended farther into the interior of Pangea than has previously been documented, and may allow correlation of the Tynemouth Creek and Joggins Formations with broadly coeval European successions near the level of the Gastrioceras subcrenatum and G. listeri marine bands. It also helps explain the close similarity of faunas between the Maritimes Basin and other paleotropical basins, if transgressions facilitated migration of marine taxa into the continental interior.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Arden R. Bashforth; William A. DiMichele
Little evokes a sense of wonder about the past like moments frozen in time: the contorted bodies of Pompeiis horrified citizens fixed in their final poses, the footprints of an ancient hominin family cemented on an African savanna, the tracks of a Jurassic predator closing in on unsuspecting prey along a muddy riverbank, or tree stumps from an ancient Carboniferous rainforest buried in place by a sudden deluge (Fig. 1). These instances provide us with poignant snapshots of deep time, and just like a photograph, they also may capture some of its dynamism. In PNAS, the work by Wang et al. (1) reconstructs the vegetation of an ∼300 million-year-old early Permian-aged mire that was buried and killed by a volcanic ashfall, one of a rare but increasing number of occurrences that geologists term T0 deposits (2). The study represents a high-resolution view of a Permian-aged ‘Coal Forest’, so-called because it accumulated atop peat (now coal), an extinct ecosystem that persisted in tropical East Asia long after its better-known Pennsylvanian-aged counterparts had all but dried up in Europe and North America (1). By using a quantitative analysis of plant fossils preserved in tuff above the coal seam, the work by Wang et al. (1) provides a 3D reconstruction of the mire vegetation before the eruption, from which patterns of heterogeneity and ecological gradients emerge. Such T0 deposits allow paleoecologists to examine the past in much the same way neoecologists appraise modern environments, and to ask questions about the conformity of observed patterns with various aspects of ecological theory.
Review of Palaeobotany and Palynology | 2011
Arden R. Bashforth; Jana Drábková; Stanislav Opluštil; Martin R. Gibling; Howard J. Falcon-Lang
Journal of Sedimentary Research | 2010
Martin R. Gibling; Arden R. Bashforth; Howard J. Falcon-Lang; Jonathan P. Allen; Christopher R. Fielding
Review of Palaeobotany and Palynology | 2009
Stanislav Opluštil; Josef Pšenička; Milan Libertín; Arden R. Bashforth; Zbyněk Šimůnek; Jana Drábková; Jiřina Dašková
Sedimentology | 2014
Alessandro Ielpi; Martin R. Gibling; Arden R. Bashforth; Corinne Lally; Michael C. Rygel; Saif Al‐Silwadi