Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ari J. Green is active.

Publication


Featured researches published by Ari J. Green.


Human Molecular Genetics | 2009

Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis

Sergio E. Baranzini; Joanne Wang; Rachel A. Gibson; Nicholas W. Galwey; Yvonne Naegelin; Frederik Barkhof; Ernst Wilhelm Radue; Raija L.P. Lindberg; Bernard Uitdehaag; Michael R. Johnson; Aspasia Angelakopoulou; Leslie Hall; Jill C. Richardson; Rab K. Prinjha; Achim Gass; Jeroen J. G. Geurts; Madeleine H. Sombekke; Hugo Vrenken; Pamela Qualley; Robin Lincoln; Refujia Gomez; Stacy J. Caillier; Michaela F. George; Hourieh Mousavi; Rosa Guerrero; Darin T. Okuda; Bruce Cree; Ari J. Green; Emmanuelle Waubant; Douglas S. Goodin

Multiple sclerosis (MS), a chronic disorder of the central nervous system and common cause of neurological disability in young adults, is characterized by moderate but complex risk heritability. Here we report the results of a genome-wide association study performed in a 1000 prospective case series of well-characterized individuals with MS and group-matched controls using the Sentrix HumanHap550 BeadChip platform from Illumina. After stringent quality control data filtering, we compared allele frequencies for 551 642 SNPs in 978 cases and 883 controls and assessed genotypic influences on susceptibility, age of onset, disease severity, as well as brain lesion load and normalized brain volume from magnetic resonance imaging exams. A multi-analytical strategy identified 242 susceptibility SNPs exceeding established thresholds of significance, including 65 within the MHC locus in chromosome 6p21.3. Independent replication confirms a role for GPC5, a heparan sulfate proteoglycan, in disease risk. Gene ontology-based analysis shows a functional dichotomy between genes involved in the susceptibility pathway and those affecting the clinical phenotype.


Lancet Neurology | 2010

Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis

Axel Petzold; Johannes F. de Boer; Sven Schippling; P. Vermersch; Randy H. Kardon; Ari J. Green; Peter A. Calabresi; Chris H. Polman

Optical coherence tomography (OCT) is a new method that could aid analysis of neurodegeneration in multiple sclerosis (MS) by capturing thinning of the retinal nerve fibre layer (RNFL). Meta-analyses of data for time domain OCT show RNFL thinning of 20.38 microm (95% CI 17.91-22.86, n=2063, p<0.0001) after optic neuritis in MS, and of 7.08 microm (5.52-8.65, n=3154, p<0.0001) in MS without optic neuritis. The estimated RNFL thinning in patients with MS is greater than the extent expected in normal ageing, probably because of retrograde trans-synaptic degeneration and progressive loss of retinal ganglion cells, in addition to the more pronounced thinning caused by optic neuritis if present. RNFL thickness correlates with visual and neurological functioning as well as with paraclinical data. Developments that could improve understanding of the relation between structure and function in MS pathophysiology include spectral or Fourier domain OCT technology, polarisation-sensitive OCT, fluorescence labelling, structural assessment of action-potential propagation, and segmentation algorithms allowing quantitative assessment of retinal layers.


Brain | 2010

Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration

Ari J. Green; Stephen McQuaid; Stephen L. Hauser; Ingrid V. Allen; Roy W. Lyness

There has been growing interest in the use of retinal imaging for tracking disease progression in multiple sclerosis. However, systematic and detailed pathological descriptions of retinal tissue in multiple sclerosis are lacking. Graded, histological evaluations on eyes from 82 patients with multiple sclerosis and 10 subjects with other neurological diseases, with immunohistochemistry on a subset, were performed and correlated with clinical and pathological findings. Multiple sclerosis cases demonstrated evidence of retinal atrophy and inflammation even in late-stage disease. Retinal ganglion cell loss was significant and remaining neurons appeared shrunken and were partially engulfed by human leukocyte antigen-DR positive cells with the phenotype of microglia in samples subjected to immunohistochemistry. Neurofilament staining revealed variable but prominent degrees of axonal loss and injury. Neuronal loss was noted in the inner nuclear layer with focal reduction in cell density. Foamy-appearing human leukocyte antigen-DR positive cells were evident near vessels and periphlebitis was found in a small but significant number of multiple sclerosis cases. Glial fibrillary acidic protein staining showed extensive astrocyte hypertrophy and proliferation with prominent gliosis in multiple sclerosis cases. Frequent but previously unreported abnormalities in the iris were documented in the majority of chronic multiple sclerosis cases. The injury to both iris and retina could be seen at all stages of disease. Severity of retinal atrophy was correlated with overall brain weight at time of autopsy (P = 0.04) and a trend for increased atrophy was seen with longer disease duration (P = 0.13). This study provides the first large-scale pathological description of retinas in multiple sclerosis, including patients with different subtypes of disease at all stages, and with variable clinical severity. Changes were seen not only in the retinal nerve fibre layer and ganglion cell layer, but also in the inner nuclear layer, suggesting that retinal injury is more widespread than previously appreciated. Furthermore, the human retina is devoid of myelin, but inflammation was demonstrated to be prominent in multiple sclerosis and to persist in the retina at late stages of disease. The prominent gliosis and inflammation surrounding vessels of the inner retina could potentially impact optical coherence tomography evaluations in multiple sclerosis-as standard techniques exploit presumed differences in tissue reflectivity and utilize automated edge detection algorithms to judge axon loss in the nerve fibre layer. Deciphering the relationships between the different types of retinal pathology may aid us in understanding the factors that drive both inflammation and tissue atrophy in multiple sclerosis.


Brain | 2012

Microcystic macular oedema in multiple sclerosis is associated with disease severity

Jeffrey M. Gelfand; Rachel Nolan; Daniel M. Schwartz; Jennifer Graves; Ari J. Green

Macular oedema typically results from blood-retinal barrier disruption. It has recently been reported that patients with multiple sclerosis treated with FTY-720 (fingolimod) may exhibit macular oedema. Multiple sclerosis is not otherwise thought to be associated with macular oedema except in the context of comorbid clinical uveitis. Despite a lack of myelin, the retina is a site of inflammation and microglial activation in multiple sclerosis and demonstrates significant neuronal and axonal loss. We unexpectedly observed microcystic macular oedema using spectral domain optical coherence tomography in patients with multiple sclerosis who did not have another reason for macular oedema. We therefore evaluated spectral domain optical coherence tomography images in consecutive patients with multiple sclerosis for microcystic macular oedema and examined correlations between macular oedema and visual and ambulatory disability in a cross-sectional analysis. Participants were excluded if there was a comorbidity that could account for the presence of macular oedema, such as uveitis, diabetes or other retinal disease. A microcystic pattern of macular oedema was observed on optical coherence tomography in 15 of 318 (4.7%) patients with multiple sclerosis. No macular oedema was identified in 52 healthy controls assessed over the same period. The microcystic oedema predominantly involved the inner nuclear layer of the retina and tended to occur in small, discrete patches. Patients with multiple sclerosis with microcystic macular oedema had significantly worse disability [median Expanded Disability Score Scale 4 (interquartile range 3-6)] than patients without macular oedema [median Expanded Disability Score Scale 2 (interquartile range 1.5-3.5)], P = 0.0002. Patients with multiple sclerosis with microcystic macular oedema also had higher Multiple Sclerosis Severity Scores, a measure of disease progression, than those without oedema [median of 6.47 (interquartile range 4.96-7.98) versus 3.65 (interquartile range 1.92-5.87), P = 0.0009]. Microcystic macular oedema occurred more commonly in eyes with prior optic neuritis than eyes without prior optic neuritis (50 versus 27%) and was associated with lower visual acuity (median logMAR acuity of 0.17 versus -0.1) and a thinner retinal nerve fibre layer. The presence of microcystic macular oedema in multiple sclerosis suggests that there may be breakdown of the blood-retinal barrier and tight junction integrity in a part of the nervous system that lacks myelin. Microcystic macular oedema may also contribute to visual dysfunction beyond that explained by nerve fibre layer loss. Microcystic changes need to be assessed, and potentially adjusted for, in clinical trials that evaluate macular volume as a marker of retinal ganglion cell survival. These findings also have implications for clinical monitoring in patients with multiple sclerosis on sphingosine 1-phosphate receptor modulating agents.


PLOS ONE | 2012

The OSCAR-IB Consensus Criteria for Retinal OCT Quality Assessment

Prejaas K. Tewarie; Lisanne J. Balk; Fiona Costello; Ari J. Green; Roland Martin; Sven Schippling; Axel Petzold

Background Retinal optical coherence tomography (OCT) is an imaging biomarker for neurodegeneration in multiple sclerosis (MS). In order to become validated as an outcome measure in multicenter studies, reliable quality control (QC) criteria with high inter-rater agreement are required. Methods/Principal Findings A prospective multicentre study on developing consensus QC criteria for retinal OCT in MS: (1) a literature review on OCT QC criteria; (2) application of these QC criteria to a training set of 101 retinal OCT scans from patients with MS; (3) kappa statistics for inter-rater agreement; (4) identification reasons for inter-rater disagreement; (5) development of new consensus QC criteria; (6) testing of the new QC criteria on the training set and (7) prospective validation on a new set of 159 OCT scans from patients with MS. The inter-rater agreement for acceptable scans among OCT readers (n = 3) was moderate (kappa 0·45) based on the non-validated QC criteria which were entirely based on the ophthalmological literature. A new set of QC criteria was developed based on recognition of: (O) obvious problems, (S) poor signal strength, (C) centration of scan, (A) algorithm failure, (R) retinal pathology other than MS related, (I) illumination and (B) beam placement. Adhering to these OSCAR-IB QC criteria increased the inter-rater agreement to kappa from moderate to substantial (0.61 training set and 0.61 prospective validation). Conclusions This study presents the first validated consensus QC criteria for retinal OCT reading in MS. The high inter-rater agreement suggests the OSCAR-IB QC criteria to be considered in the context of multicentre studies and trials in MS.


Lancet Neurology | 2012

Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study.

Shiv Saidha; Elias S. Sotirchos; Mohamed Ibrahim; Ciprian M. Crainiceanu; Jeffrey M. Gelfand; Yasir J. Sepah; John N. Ratchford; Jiwon Oh; Michaela Seigo; Scott D. Newsome; Laura J. Balcer; Elliot M. Frohman; Ari J. Green; Quan Dong Nguyen; Peter A. Calabresi

BACKGROUND Microcystic macular oedema (MMO) of the retinal inner nuclear layer (INL) has been identified in patients with multiple sclerosis (MS) by use of optical coherence tomography (OCT). We aimed to determine whether MMO of the INL, and increased thickness of the INL are associated with disease activity or disability progression. METHODS This retrospective study was done at the Johns Hopkins Hospital (Baltimore, MD, USA), between September, 2008, and March, 2012. Patients with MS and healthy controls underwent serial OCT scans and clinical assessments including visual function. OCT scanning, including automated intraretinal layer segmentation, yielded thicknesses of the retinal nerve fibre layer, the ganglion cell layer plus inner plexiform layer, the INL plus outer plexiform layer (the combined thickness of these layers was used as a surrogate measure of INL thickness), and the outer nuclear layer. Patients with MS also underwent annual brain MRI scans. Disability scores were compared with the Wilcoxon rank-sum test. Mixed-effects linear regression was used to compare OCT measures and letter-acuity scores. Logistic regression was used to examine the relations of baseline OCT thicknesses with clinical and radiological parameters. FINDINGS 164 patients with MS and 60 healthy controls were assessed. Mean follow-up was 25·8 months (SD 9·1) for patients with MS and 22·4 months (11·4) for healthy controls. Ten (6%) patients with MS had MMO during at least one study visit; MMO was visible at baseline in four of these patients. Healthy controls did not have MMO. Patients with MS and MMO had higher baseline MS severity scores (median 5·93 [range 2·44-8·91]) than those who did not have MMO at any time during the study (151 patients; 3·81 [0·13-9·47]; p=0·032), although expanded disability status scale (EDSS) scores were not significantly different (5·2 [1·0-6·5] for patients with MS and MMO vs 2·5 [0·0-8·0] for those without MMO; p=0·097). The eyes of patients with MS and MMO (12 eyes) versus those without MMO (302 eyes) had lower letter-acuity scores (100% contrast, p=0·017; 2·5% contrast, p=0·031; 1·25% contrast, p=0·014), and increased INL thicknesses (p=0·003) at baseline. Increased baseline INL thickness in patients with MS was associated with the development of contrast-enhancing lesions (p=0·007), new T2 lesions (p=0·015), EDSS progression (p=0·034), and relapses in patients with relapsing-remitting MS (p=0·008) during the study. MMO was not associated with disease activity during follow-up. INTERPRETATION Increased INL thickness on OCT is associated with disease activity in MS. If this finding is confirmed, INL thickness could be a useful predictor of disease progression in patients with MS. FUNDING National Multiple Sclerosis Society, National Eye Institute, Braxton Debbie Angela Dillon and Skip Donor Advisor Fund.


Annals of Neurology | 2014

Spinal Cord Gray Matter Atrophy Correlates with Multiple Sclerosis Disability

Regina Schlaeger; Nico Papinutto; Valentina Panara; Carolyn Bevan; Iryna Lobach; Monica Bucci; Eduardo Caverzasi; Jeffrey M. Gelfand; Ari J. Green; Kesshi M. Jordan; William A. Stern; H.-Christian von Büdingen; Emmanuelle Waubant; Alyssa H. Zhu; Douglas S. Goodin; Bruce Cree; Stephen L. Hauser; Roland G. Henry

In multiple sclerosis (MS), cerebral gray matter (GM) atrophy correlates more strongly than white matter (WM) atrophy with disability. The corresponding relationships in the spinal cord (SC) are unknown due to technical limitations in assessing SC GM atrophy. Using phase‐sensitive inversion recovery (PSIR) magnetic resonance imaging, we determined the association of the SC GM and SC WM areas with MS disability and disease type.


Multiple Sclerosis Journal | 2015

Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography

Jeffrey L. Bennett; J. De Seze; Marco Aurélio Lana-Peixoto; Jacqueline Palace; Amy Waldman; Sven Schippling; Silvia Tenembaum; Brenda Banwell; Benjamin Greenberg; Michael Levy; Kazuo Fujihara; Kh Chan; Ho Jin Kim; Nasrin Asgari; Douglas Kazutoshi Sato; Albert Saiz; Jens Wuerfel; Hanna Zimmermann; Ari J. Green; Pablo Villoslada; Friedemann Paul

Neuromyelitis optica (NMO) is an inflammatory autoimmune disease of the central nervous system that preferentially targets the optic nerves and spinal cord. The clinical presentation may suggest multiple sclerosis (MS), but a highly specific serum autoantibody against the astrocytic water channel aquaporin-4 present in up to 80% of NMO patients enables distinction from MS. Optic neuritis may occur in either condition resulting in neuro-anatomical retinal changes. Optical coherence tomography (OCT) has become a useful tool for analyzing retinal damage both in MS and NMO. Numerous studies showed that optic neuritis in NMO typically results in more severe retinal nerve fiber layer (RNFL) and ganglion cell layer thinning and more frequent development of microcystic macular edema than in MS. Furthermore, while patients’ RNFL thinning also occurs in the absence of optic neuritis in MS, subclinical damage seems to be rare in NMO. Thus, OCT might be useful in differentiating NMO from MS and serve as an outcome parameter in clinical studies.


Lancet Neurology | 2016

Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: a cohort study

Elena H. Martinez-Lapiscina; Sam Arnow; James A. Wilson; Shiv Saidha; Jana Lizrova Preiningerova; Timm Oberwahrenbrock; Alexander U. Brandt; Luis E. Pablo; Simone Guerrieri; Ines Gonzalez; Olivier Outteryck; Ann-Kristin Mueller; Phillip Albrecht; Wesley Chan; Sebastian Lukas; Lisanne J. Balk; Clare L. Fraser; J. L. Frederiksen; Jennifer Resto; Teresa C. Frohman; Christian Cordano; Irati Zubizarreta; Magi Andorra; Bernardo Sanchez-Dalmau; Albert Saiz; Robert A. Bermel; Alexander Klistorner; Axel Petzold; Sven Schippling; Fiona Costello

BACKGROUND Most patients with multiple sclerosis without previous optic neuritis have thinner retinal layers than healthy controls. We assessed the role of peripapillary retinal nerve fibre layer (pRNFL) thickness and macular volume in eyes with no history of optic neuritis as a biomarker of disability worsening in a cohort of patients with multiple sclerosis who had at least one eye without optic neuritis available. METHODS In this multicentre, cohort study, we collected data about patients (age ≥16 years old) with clinically isolated syndrome, relapsing-remitting multiple sclerosis, and progressive multiple sclerosis. Patients were recruited from centres in Spain, Italy, France, Germany, Czech Republic, Netherlands, Canada, and the USA, with the first cohort starting in 2008 and the latest cohort starting in 2013. We assessed disability worsening using the Expanded Disability Status Scale (EDSS). The pRNFL thickness and macular volume were assessed once at study entry (baseline) by optical coherence tomography (OCT) and was calculated as the mean value of both eyes without optic neuritis for patients without a history of optic neuritis or the value of the non-optic neuritis eye for patients with previous unilateral optic neuritis. Researchers who did the OCT at baseline were masked to EDSS results and the researchers assessing disability with EDSS were masked to OCT results. We estimated the association of pRNFL thickness or macular volume at baseline in eyes without optic neuritis with the risk of subsequent disability worsening by use of proportional hazards models that included OCT metrics and age, disease duration, disability, presence of previous unilateral optic neuritis, and use of disease-modifying therapies as covariates. FINDINGS 879 patients with clinically isolated syndrome (n=74), relapsing-remitting multiple sclerosis (n=664), or progressive multiple sclerosis (n=141) were included in the primary analyses. Disability worsening occurred in 252 (29%) of 879 patients with multiple sclerosis after a median follow-up of 2·0 years (range 0·5-5 years). Patients with a pRNFL of less than or equal to 87 μm or less than or equal to 88 μm (measured with Spectralis or Cirrus OCT devices) had double the risk of disability worsening at any time after the first and up to the third years of follow-up (hazard ratio 2·06, 95% CI 1·36-3·11; p=0·001), and the risk was increased by nearly four times after the third and up to the fifth years of follow-up (3·81, 1·63-8·91; p=0·002). We did not identify meaningful associations for macular volume. INTERPRETATION Our results provide evidence of the usefulness of monitoring pRNFL thickness by OCT for prediction of the risk of disability worsening with time in patients with multiple sclerosis. FUNDING Instituto de Salud Carlos III.


Archive | 2014

Spinal cord gray matter atrophy correlates with multiple sclerosis disability - eScholarship

Regina Schlaeger; Nico Papinutto; Panara; Carolyn Bevan; Lobach; Monica Bucci; Eduardo Caverzasi; Jeffrey M. Gelfand; Ari J. Green; Kesshi M. Jordan; William A. Stern; Hc Von Büdingen; Emmanuelle Waubant; Ah Zhu; Douglas S. Goodin; Bac Cree; Stephen L. Hauser; Roland G. Henry

In multiple sclerosis (MS), cerebral gray matter (GM) atrophy correlates more strongly than white matter (WM) atrophy with disability. The corresponding relationships in the spinal cord (SC) are unknown due to technical limitations in assessing SC GM atrophy. Using phase‐sensitive inversion recovery (PSIR) magnetic resonance imaging, we determined the association of the SC GM and SC WM areas with MS disability and disease type.

Collaboration


Dive into the Ari J. Green's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Cree

University of California

View shared research outputs
Top Co-Authors

Avatar

Carolyn Bevan

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter A. Calabresi

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge