Ari M. Chow
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ari M. Chow.
Cell Stress & Chaperones | 2005
Ari M. Chow; Ian R. Brown
Abstract Neurodegenerative disorders such as Alzheimers disease, Parkinsons disease, and amyotrophic lateral sclerosis have been termed protein misfolding disorders that are characterized by the neuronal accumulation of protein aggregates. Manipulation of the cellular stress-response involving induction of heat shock proteins (Hsps) in differentiated neurons offers a therapeutic strategy to counter conformational changes in neuronal proteins that trigger pathogenic cascades resulting in neurodegenerative diseases. Hsps are protein repair agents that provide a line of defense against misfolded, aggregation-prone proteins. These proteins are not induced in differentiated neurons by conventional heat shock. We have found that celastrol, a quinine methide triterpene, induced expression of a wider set of Hsps, including Hsp70B′, in differentiated human neurons grown in tissue culture compared to cultured rodent neuronal cells. Hence the beneficial effect of celastrol against human neurodegenerative diseases may exceed its potential in rodent models of these diseases.
Cell Stress & Chaperones | 2009
Ari M. Chow; Christine Ferrier-Pagès; Sam Khalouei; Stéphanie Reynaud; Ian R. Brown
The effect of increased light intensity and heat stress on heat shock protein Hsp60 was examined in two coral species using a branched coral and a laminar coral, selected for their different resistance to environmental perturbation. Transient Hsp60 induction was observed in the laminar coral following either light or thermal stress. Sustained induction was observed when these stresses were combined. The branched coral exhibited comparatively weak transient Hsp60 induction after heat stress and no detectable induction following light stress, consistent with its susceptibility to bleaching in native environments compared to the laminar coral. Our observations also demonstrate that increased light intensity and heat stress exhibited a greater negative impact on the photosynthetic capacity of environmentally sensitive branched coral than the more resistant laminar coral. This supports a correlation between stress induction of Hsp60 and (a) ability to counter perturbation of photosynthetic capacity by light and heat stress and (b) resistance to environmentally induced coral bleaching.
Cell Stress & Chaperones | 2013
Ari M. Chow; Derek W. F. Tang; Asad Hanif; Ian R. Brown
Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis (ALS) are ‘protein misfolding disorders’ of the mature nervous system that are characterized by the accumulation of protein aggregates and selective cell loss. Different brain regions are impacted, with Alzheimer’s affecting cells in the cerebral cortex, Parkinson’s targeting dopaminergic cells in the substantia nigra and ALS causing degeneration of cells in the spinal cord. These diseases differ widely in frequency in the human population. Alzheimer’s is more frequent than Parkinson’s and ALS. Heat shock proteins (Hsps) are ‘protein repair agents’ that provide a line of defense against misfolded, aggregation-prone proteins. We have suggested that differing levels of constitutively expressed Hsps (Hsc70 and Hsp27) in neural cell populations confer a variable buffering capacity against ‘protein misfolding disorders’ that correlates with the relative frequencies of these neurodegenerative diseases. The high relative frequency of Alzheimer’s may due to low levels of Hsc70 and Hsp27 in affected cell populations that results in a reduced defense capacity against protein misfolding. Here, we demonstrate that celastrol, but not classical heat shock treatment, is effective in inducing a set of neuroprotective Hsps in cultures derived from cerebral cortices, including Hsp70, Hsp27 and Hsp32. This set of Hsps is induced by celastrol at ‘days in vitro’ (DIV) 13 when cultured cortical cells reached maturity. The inducibility of a set of neuroprotective Hsps in mature cortical cultures at DIV13 suggests that celastrol is a potential agent to counter Alzheimer’s disease, a neurodegenerative ‘protein misfolding disorder’ of the adult brain that targets cells in the cerebral cortex.
ACS Chemical Neuroscience | 2013
Anthony J. Veloso; Devjani Dhar; Ari M. Chow; Biao Zhang; Derek W. F. Tang; Hashwin V. S. Ganesh; Svetlana Mikhaylichenko; Ian R. Brown; Kagan Kerman
Alzheimers disease (AD) is a complex neurodegenerative disorder marked by numerous causative factors of disease progression, termed pathologies. We report here the synthesis of a small library of novel sym-triazine compounds designed for targeted modulation of multiple pathologies related to AD, specifically human acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and Aβ aggregation. Rational targeting of AChE was achieved by the incorporation of acetylcholine substrate analogues into a sym-triazine core in either a mono-, di-, or trisubstituted regime. A subset of these derivatives demonstrated improved activity compared to several commercially available cholinesterase inhibitors. High AChE/BuChE selectivity was characteristic of all derivatives, and AChE steady-state kinetics indicated a mixed-type inhibition mechanism. Further integration of multiple hydrophobic phenyl units allowed for improved β-sheet intercalation into amyloid aggregates. Several highly effective structures exhibited fibril inhibition greater than the previously reported β-sheet-disrupting penta-peptide, iAβ5p, evaluated by thioflavin T fluorescence spectroscopy and transmission electron microscopy. Highly effective sym-triazines were shown to be well tolerated by differentiated human neuronal cells, as demonstrated by the absence of adverse effects on cellular viability at a wide range of concentrations. Parallel targeting of multiple pathologies using sym-triazines is presented here as an effective strategy to address the complex, multifactorial nature of AD progression.
Cell Stress & Chaperones | 2010
Ari M. Chow; Philip K. T. Mok; Dawn Xiao; Sam Khalouei; Ian R. Brown
Human neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis have been termed “protein misfolding disorders.” Upregulation of heat shock proteins that target misfolded aggregation-prone proteins has been proposed as a potential therapeutic strategy to counter neurodegenerative disorders. The heat shock protein 70 (HSP70) family is well characterized for its cytoprotective effects against cell death and has been implicated in neuroprotection by overexpression studies. HSP70 family members exhibit sequence and structural conservation. The significance of the multiplicity of HSP70 proteins is unknown. In this study, coimmunoprecipitation was employed to determine if association of HSP70 family members occurs, including Hsp70B′ which is present in the human genome but not in mouse and rat. Heteromeric complexes of Hsp70B′, Hsp70, and Hsc70 were detected in differentiated human SH-SY5Y neuronal cells. Hsp70B′ also formed complexes with Hsp40 suggesting a common co-chaperone for HSP70 family members.
Cell Stress & Chaperones | 2014
Sam Khalouei; Ari M. Chow; Ian R. Brown
The localization of yellow fluorescent protein (YFP)-tagged HSP70 proteins was employed to identify stress-sensitive sites in human neurons following temperature elevation. Stable lines of human SH-SY5Y neuronal cells were established that expressed YFP-tagged protein products of the human inducible HSP70 genes HSPA6 (HSP70B′) and HSPA1A (HSP70-1). Following a brief period of thermal stress, YFP-tagged HSPA6 and HSPA1A rapidly appeared at centrioles in the cytoplasm of human neuronal cells, with HSPA6 demonstrating a more prolonged signal compared to HSPA1A. Each centriole is composed of a distal end and a proximal end, the latter linking the centriole doublet. The YFP-tagged HSP70 proteins targeted the proximal end of centrioles (identified by γ-tubulin marker) rather than the distal end (centrin marker). Centrioles play key roles in cellular polarity and migration during neuronal differentiation. The proximal end of the centriole, which is involved in centriole stabilization, may be stress-sensitive in post-mitotic, differentiating human neurons.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2012
Ari M. Chow; Eric Beraud; Derek W. F. Tang; Christine Ferrier-Pagès; Ian R. Brown
The heat shock protein Hsp60 exhibited marked oscillation during a 12-hour day period when the coral Turbinaria reniformis was maintained in the laboratory under constant conditions of light (200μE) and temperature (27°C). A biphasic pattern of Hsp60 was apparent, punctuated by a low protein level at the midpoint of the 12-hour day period. Oscillation of Hsp60 was also apparent when coral was kept in darkness in lieu of a scheduled light period. The pattern of Hsp60 was altered when coral was exposed to increased light intensity (400μE) or temperature elevation (32°C). These observations suggest that Hsp60 in coral exhibits oscillation that is altered by increased light and temperature elevation.
Analytical Chemistry | 2013
Nan Li; Ari M. Chow; Hashwin V. S. Ganesh; Ian R. Brown; Kagan Kerman
Cancer is a major global health challenge that would benefit from advances in screening methods for early detection that are rapid and low cost. TF-antigen is a tumor-associated antigen displayed on cell surface proteins of a high percentage of human carcinomas. Here we present a fluorometric bioassay for TF-antigen (galactose-β-(1→3)-N-acetyl-d-galactosamine) that utilizes quantum dot (QD) technology coupled with magnetic beads for rapid detection of TF-antigen at high sensitivity (10(-7) M range). In the competitive bioassay, 4-aminophenyl β-d-galactopyranoside (4-APG) conjugated to QDs competes with TF-antigen for binding sites on peanut agglutinin (PNA) that is immobilized on magnetic beads. The bioassay is specific and ultrasensitive in the environment of complex protein mixtures, demonstrating its potential applicability for the screening of clinical samples.
ACS Chemical Neuroscience | 2012
Tiffiny Chan; Ari M. Chow; Xin R. Cheng; Derek W. F. Tang; Ian R. Brown; Kagan Kerman
The interaction of dopamine (DA) and α-synuclein (α-S) can lead to protein misfolding and neuronal death triggered by oxidative stress relevant to the progression of Parkinsons disease (PD). In this study, interfacial properties associated with DA-induced α-S aggregation under various solution conditions (i.e., pH, ionic strength) were investigated in vitro. The electrochemical oxidation of tyrosine (Tyr) residues in α-S was detected in the presence of DA. DA concentration dependence was analyzed and found to significantly affect α-S aggregation pathways. At low pH, DA was shown to be stable and produced no observable difference in interfacial properties. Between pH 7 and 11, DA promoted α-S aggregation. Significant differences in oxidation current signals in response to high pH and ionic strength suggested the importance of initial interactions in the stabilization of toxic oligomeric structures and subsequent off-pathways of α-S. Our results demonstrate the importance of solution interactions with α-S and the unique information that electrochemical techniques can provide for the investigation of α-S aggregation at early stages, an important step toward the development of future PD therapeutics.
ACS Chemical Neuroscience | 2013
Anthony J. Veloso; Ari M. Chow; Devjani Dhar; Derek W. F. Tang; Hashwin V. S. Ganesh; Svetlana Mikhaylichenko; Ian R. Brown; Kagan Kerman
The bioactivities of two novel compounds (TAE-1 and TAE-2) that contain a sym-triazine scaffold with acetylcholine-like substitutions are examined as promising candidate agents against Alzheimers disease. Inhibition of amyloid-β fibril formation in the presence of Aβ1-42, evaluated by Thioflavin T fluorescence, demonstrated comparable or improved activity to a previously reported pentapeptide-based fibrillogenesis inhibitor, iAβ5p. Destabilization of Aβ1-42 assemblies by TAE-1 and TAE-2 was confirmed by scanning electron microscopy imaging. sym-Triazine inhibition of acetylcholinesterase (AChE) activity was observed in cytosol extracted from differentiated human SH-SY5Y neuronal cells and also using human erythrocyte AChE. The sym-triazine derivatives were well tolerated by these cells and promoted beneficial effects on human neurons, upregulating expression of synaptophysin, a synaptic marker protein, and MAP2, a neuronal differentiation marker.