Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ari S. Friedlaender is active.

Publication


Featured researches published by Ari S. Friedlaender.


Biology Letters | 2013

First direct measurements of behavioural responses by Cuvier's beaked whales to mid-frequency active sonar.

Stacy L. DeRuiter; Brandon L. Southall; John Calambokidis; Walter M. X. Zimmer; Dinara Sadykova; Erin A. Falcone; Ari S. Friedlaender; John E. Joseph; David Moretti; Gregory S. Schorr; Len Thomas; Peter L. Tyack

Most marine mammal strandings coincident with naval sonar exercises have involved Cuviers beaked whales (Ziphius cavirostris). We recorded animal movement and acoustic data on two tagged Ziphius and obtained the first direct measurements of behavioural responses of this species to mid-frequency active (MFA) sonar signals. Each recording included a 30-min playback (one 1.6-s simulated MFA sonar signal repeated every 25 s); one whale was also incidentally exposed to MFA sonar from distant naval exercises. Whales responded strongly to playbacks at low received levels (RLs; 89–127 dB re 1 µPa): after ceasing normal fluking and echolocation, they swam rapidly, silently away, extending both dive duration and subsequent non-foraging interval. Distant sonar exercises (78–106 dB re 1 µPa) did not elicit such responses, suggesting that context may moderate reactions. The observed responses to playback occurred at RLs well below current regulatory thresholds; equivalent responses to operational sonars could elevate stranding risk and reduce foraging efficiency.


PLOS ONE | 2011

Super-Aggregations of Krill and Humpback Whales in Wilhelmina Bay, Antarctic Peninsula

Douglas P. Nowacek; Ari S. Friedlaender; Patrick N. Halpin; Elliott L. Hazen; David W. Johnston; Andrew J. Read; Boris Espinasse; Meng Zhou; Yiwu Zhu

Ecological relationships of krill and whales have not been explored in the Western Antarctic Peninsula (WAP), and have only rarely been studied elsewhere in the Southern Ocean. In the austral autumn we observed an extremely high density (5.1 whales per km2) of humpback whales (Megaptera novaeangliae) feeding on a super-aggregation of Antarctic krill (Euphausia superba) in Wilhelmina Bay. The krill biomass was approximately 2 million tons, distributed over an area of 100 km2 at densities of up to 2000 individuals m−3; reports of such ‘super-aggregations’ of krill have been absent in the scientific literature for >20 years. Retentive circulation patterns in the Bay entrained phytoplankton and meso-zooplankton that were grazed by the krill. Tagged whales rested during daylight hours and fed intensively throughout the night as krill migrated toward the surface. We infer that the previously unstudied WAP embayments are important foraging areas for whales during autumn and, furthermore, that meso-scale variation in the distribution of whales and their prey are important features of this system. Recent decreases in the abundance of Antarctic krill around the WAP have been linked to reductions in sea ice, mediated by rapid climate change in this area. At the same time, baleen whale populations in the Southern Ocean, which feed primarily on krill, are recovering from past exploitation. Consideration of these features and the effects of climate change on krill dynamics are critical to managing both krill harvests and the recovery of baleen whales in the Southern Ocean.


Behaviour | 2011

Underwater components of humpback whale bubble-net feeding behaviour

David N. Wiley; Colin Ware; Alessandro Bocconcelli; Danielle Cholewiak; Ari S. Friedlaender; Michael A. Thompson; Mason T. Weinrich

Summary Humpback whales (Megaptera novaeangliae) employ a unique and complex foraging behaviour — bubble-netting — that involves expelling air underwater to form a vertical cylinder-ring of bubbles around prey. We used digital suction cup tags (DTAGs) that concurrently measure pitch, roll, heading, depth and sound (96 kHz sampling rate), to provide the first depiction of the underwater behaviours in which humpback whales engage during bubble-net feeding. Body mechanics and swim paths were analysed using custom visualization software that animates the underwater track of the whale and quantifies tag sensor values. Bubble production was identified aurally and through spectrographic analysis of tag audio records. We identified two classes of behaviour (upward-spiral; 6 animals, 118 events and double-loop; 3 animals, 182 events) that whales used to create bubble nets. Specifically, we show the actual swim path of the whales (e.g., number of revolutions, turning rate, depth interval of spiral), when and where in the process bubbles were expelled and the pattern of bubble expulsion used by the animals. Relative to other baleanopterids, bubble-netting humpbacks demonstrate increased manoeuvrability probably aided by a unique hydrodynamicly enhanced body form. We identified an approximately 20 m depth or depth interval limit to the use of bubble nets and suggest that this limit is due to the physics of bubble dispersal to which humpback whales have behaviourally adapted. All animals were feeding with at


Biology Letters | 2012

Underwater acrobatics by the world's largest predator: 360° rolling manoeuvres by lunge-feeding blue whales

Jeremy A. Goldbogen; John Calambokidis; Ari S. Friedlaender; John Francis; Stacy L. DeRuiter; Alison K. Stimpert; Erin A. Falcone; Brandon L. Southall

The extreme body size of blue whales requires a high energy intake and therefore demands efficient foraging strategies. As an obligate lunge feeder on aggregations of small zooplankton, blue whales engulf a large volume of prey-laden water in a single, rapid gulp. The efficiency of this feeding mechanism is strongly dependent on the amount of prey that can be captured during each lunge, yet food resources tend to be patchily distributed in both space and time. Here, we measured the three-dimensional kinematics and foraging behaviour of blue whales feeding on krill, using suction-cup attached multi-sensor tags. Our analyses revealed 360° rolling lunge-feeding manoeuvres that reorient the body and position the lower jaws so that a krill patch can be engulfed with the whales body inverted. We also recorded these rolling behaviours when whales were in a searching mode in between lunges, suggesting that this behaviour also enables the whale to visually process the prey field and maximize foraging efficiency by surveying for the densest prey aggregations. These results reveal the complex manoeuvrability that is required for large rorqual whales to exploit prey patches and highlight the need to fully understand the three-dimensional interactions between predator and prey in the natural environment.


PLOS ONE | 2012

Humpback Whale Song and Foraging Behavior on an Antarctic Feeding Ground

Alison K. Stimpert; Lindsey E. Peavey; Ari S. Friedlaender; Douglas P. Nowacek

Reports of humpback whale (Megaptera novaeangliae) song chorusing occurring outside the breeding grounds are becoming more common, but song structure and underwater behavior of individual singers on feeding grounds and migration routes remain unknown. Here, ten humpback whales in the Western Antarctic Peninsula were tagged in May 2010 with non-invasive, suction-cup attached tags to study foraging ecology and acoustic behavior. Background song was identified on all ten records, but additionally, acoustic records of two whales showed intense and continuous singing, with a level of organization and structure approaching that of typical breeding ground song. The songs, produced either by the tagged animals or close associates, shared phrase types and theme structure with one another, and some song bouts lasted close to an hour. Dive behavior of tagged animals during the time of sound production showed song occurring during periods of active diving, sometimes to depths greater than 100 m. One tag record also contained song in the presence of feeding lunges identified from the behavioral sensors, indicating that mating displays occur in areas worthy of foraging. These data show behavioral flexibility as the humpbacks manage competing needs to continue to feed and to prepare for the breeding season during late fall. This may also signify an ability to engage in breeding activities outside of the traditional, warm water breeding ground locations.


Annual Review of Marine Science | 2017

How Baleen Whales Feed: The Biomechanics of Engulfment and Filtration.

Jeremy A. Goldbogen; David E. Cade; John Calambokidis; Ari S. Friedlaender; Jean Potvin; Paolo S. Segre; Alexander J. Werth

Baleen whales are gigantic obligate filter feeders that exploit aggregations of small-bodied prey in littoral, epipelagic, and mesopelagic ecosystems. At the extreme of maximum body size observed among mammals, baleen whales exhibit a unique combination of high overall energetic demands and low mass-specific metabolic rates. As a result, most baleen whale species have evolved filter-feeding mechanisms and foraging strategies that take advantage of seasonally abundant yet patchily and ephemerally distributed prey resources. New methodologies consisting of multi-sensor tags, active acoustic prey mapping, and hydrodynamic modeling have revolutionized our ability to study the physiology and ecology of baleen whale feeding mechanisms. Here, we review the current state of the field by exploring several hypotheses that aim to explain how baleen whales feed. Despite significant advances, major questions remain about the processes that underlie these extreme feeding mechanisms, which enabled the evolution of the largest animals of all time.


PLOS ONE | 2012

The Effects of Climate Change on Harp Seals (Pagophilus groenlandicus)

David W. Johnston; Matthew T. Bowers; Ari S. Friedlaender; David M. Lavigne

Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data.


Scientific Reports | 2015

Acoustic and foraging behavior of a Baird's beaked whale, Berardius bairdii, exposed to simulated sonar

Alison K. Stimpert; Stacy L. DeRuiter; Brandon L. Southall; David Moretti; Erin A. Falcone; Jeremy A. Goldbogen; Ari S. Friedlaender; Gregory S. Schorr; John Calambokidis

Beaked whales are hypothesized to be particularly sensitive to anthropogenic noise, based on previous strandings and limited experimental and observational data. However, few species have been studied in detail. We describe the underwater behavior of a Bairds beaked whale (Berardius bairdii) from the first deployment of a multi-sensor acoustic tag on this species. The animal exhibited shallow (23 ± 15u2005m max depth), intermediate (324 ± 49u2005m), and deep (1138 ± 243u2005m) dives. Echolocation clicks were produced with a mean inter-click interval of approximately 300u2005ms and peak frequency of 25u2005kHz. Two deep dives included presumed foraging behavior, with echolocation pulsed sounds (presumed prey capture attempts) associated with increased maneuvering, and sustained inverted swimming during the bottom phase of the dive. A controlled exposure to simulated mid-frequency active sonar (3.5–4u2005kHz) was conducted 4u2005hours after tag deployment, and within 3 minutes of exposure onset, the tagged whale increased swim speed and body movement, and continued to show unusual dive behavior for each of its next three dives, one of each type. These are the first data on the acoustic foraging behavior in this largest beaked whale species, and the first experimental demonstration of a response to simulated sonar.


Fishery Bulletin | 2014

Strandings as indicators of marine mammal biodiversity and human interactions off the coast of North Carolina

Barbie L. Byrd; Aleta A. Hohn; Gretchen N. Lovewell; Karen M. Altman; Susan G. Barco; Ari S. Friedlaender; Craig A. Harms; William A. McLellan; Kathleen M. T. Moore; Patricia E. Rosel; Victoria G. Thayer

The adjacency of 2 marine biogeographic regions off Cape Hatteras, North Carolina (NC), and the proximity of the Gulf Stream result in a high biodiversity of species from northern and southern provinces and from coastal and pelagic habitats. We examined spatiotemporal patterns of marine mammal strandings and evidence of human interaction for these strandings along NC shorelines and evaluated whether the spatiotemporal patterns and species diversity of the stranded animals reflected published records of populations in NC waters. During the period of 1997–2008, 1847 stranded animals were documented from 1777 reported events. These animals represented 9 families and 34 species that ranged from tropical delphinids to pagophilic seals. This biodiversity is higher than levels observed in other regions. Most strandings were of coastal bottlenose dolphins (Tursiops truncatus) (56%), harbor porpoises (Phocoena phocoena) (14%), and harbor seals (Phoca vitulina) (4%). Overall, strandings of northern species peaked in spring. Bottlenose dolphin strandings peaked in spring and fall. Almost half of the strandings, including nsouthern delphinids, occurred north of Cape Hatteras, on only 30% of NC’s coastline. Most stranded animals that were positive for human interaction showed evidence of having been entangled in fishing gear, particularly bottlenose dolphins, harbor porpoises, short-finned pilot whales (Globicephala macrorhynchus), harbor seals, and humpback whales (Megaptera novaeangliae). Spatiotemporal patterns of nbottlenose dolphin strandings were similar to ocean gillnet fishing effort. Biodiversity of the animals stranded on the beaches reflected biodiversity in the waters off NC, albeit not always proportional to the relative abundance of species (e.g., Kogia species). Changes in the spatiotemporal patterns of strandings can serve as indicators of underlying changes due to anthropogenic or naturally occurring events in the source populations.


Polar Biology | 2011

Cetacean surveys in the Southern Ocean using icebreaker-supported helicopters

Meike Scheidat; Ari S. Friedlaender; Karl-Hermann Kock; Linn Sophia Lehnert; Olaf Boebel; Jason J. Roberts; Rob Williams

Cetaceans in the Southern Ocean are potentially impacted by anthropogenic activities, such as direct hunting or through indirect effects of a reduced sea ice due to climate change. Knowledge on the distribution of cetacean species in this area is important for conservation, but the remoteness of the study area and the presence of sea ice make it difficult to conduct shipboard surveys to obtain this information. In this study, aerial surveys were conducted from ship-based helicopters. In the 2006/07 (ANT XXIII/8) and 2008/09 (ANT XXV/2) polar summers, the icebreaker RV ‘Polarstern’ conducted research cruises in the Weddell Sea, which offered the opportunity to use the helicopters to conduct dedicated cetacean surveys. Combining the results from both cruises, over 26,000xa0km were covered on survey effort, 13 different cetacean species were identified, and a total of 221 cetacean sightings consisting of a total of 650 animals were made. Using digital photography, it was possible to identify four different beaked whale species and to conduct individual photo-identification of humpback and southern right whales. Helicopter surveys allow the collection of additional information on sightings, (e.g. group size, species), as well as the coverage of areas with high ice coverage. The flexibility and manoeuvrability of helicopters make them a powerful scientific tool to investigate cetaceans in the Southern Ocean, especially in combination with an icebreaker.

Collaboration


Dive into the Ari S. Friedlaender's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elliott L. Hazen

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison K. Stimpert

Moss Landing Marine Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Calambokidis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Colin Ware

University of New Hampshire

View shared research outputs
Researchain Logo
Decentralizing Knowledge