Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ariane Beauvais is active.

Publication


Featured researches published by Ariane Beauvais.


Human Molecular Genetics | 2010

Rho-kinase inactivation prolongs survival of an intermediate SMA mouse model

Melissa Bowerman; Ariane Beauvais; Carrie L. Anderson; Rashmi Kothary

Spinal muscular atrophy (SMA) is an inherited disease resulting in the highest mortality of children under the age of two. SMA is caused by mutations or deletions in the survival motor neuron 1 (SMN1) gene, leading to aberrant neuromuscular junction (NMJ) development and the loss of spinal cord alpha-motor neurons. Here, we show that Smn depletion leads to increased activation of RhoA, a major regulator of actin dynamics, in the spinal cord of an intermediate SMA mouse model. Treating these mice with Y-27632, which inhibits ROCK, a direct downstream effector of RhoA, dramatically improves their survival. This lifespan rescue is independent of Smn expression and is accompanied by an improvement in the maturation of the NMJs and an increase in muscle fiber size in the SMA mice. Our study presents evidence linking disruption of actin cytoskeletal dynamics to SMA pathogenesis and, for the first time, identifies RhoA effectors as viable targets for therapeutic intervention in the disease.


Molecular and Cellular Neuroscience | 2009

SMN, profilin IIa and plastin 3: A link between the deregulation of actin dynamics and SMA pathogenesis

Melissa Bowerman; Carrie L. Anderson; Ariane Beauvais; Pietro Pilo Boyl; Walter Witke; Rashmi Kothary

Spinal muscular atrophy (SMA) is the most common human genetic disease resulting in infant mortality. SMA is caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. Why SMA specifically affects motor neurons remains poorly understood. We have shown that Smn deficient PC12 cells have increased levels of the neuronal profilin IIa protein, leading to an inappropriate activation of the RhoA/ROCK pathway. This suggests that mis-regulation of neuronal actin dynamics is central to SMA pathogenesis. Here, we demonstrate an increase in profilin IIa and a decrease in plastin 3 protein levels in a SMA mouse model. Furthermore, knock-out of profilin II upregulates plastin 3 expression in a Smn-dependent manner. However, the depletion of profilin II and the restoration of plastin 3 are not sufficient to rescue the SMA phenotype. Our study suggests that additional regulators of actin dynamics must also contribute to SMA pathogenesis.


Annals of Neurology | 2012

Glucose metabolism and pancreatic defects in spinal muscular atrophy.

Melissa Bowerman; Kathryn J. Swoboda; John Paul Michalski; Gen Sheng Wang; Courtney Reeks; Ariane Beauvais; Kelley J. Murphy; John Woulfe; Robert A. Screaton; Fraser W. Scott; Rashmi Kothary

Spinal muscular atrophy (SMA) is the number 1 genetic killer of young children. It is caused by mutation or deletion of the survival motor neuron 1 (SMN1) gene. Although SMA is primarily a motor neuron disease, metabolism abnormalities such as metabolic acidosis, abnormal fatty acid metabolism, hyperlipidemia, and hyperglycemia have been reported in SMA patients. We thus initiated an in‐depth analysis of glucose metabolism in SMA.


Neuromuscular Disorders | 2012

A critical smn threshold in mice dictates onset of an intermediate spinal muscular atrophy phenotype associated with a distinct neuromuscular junction pathology.

Melissa Bowerman; Lyndsay M. Murray; Ariane Beauvais; Bruno Pinheiro; Rashmi Kothary

Spinal muscular atrophy (SMA) is caused by mutations/deletions within the SMN1 gene and characterized by loss of lower motor neurons and skeletal muscle atrophy. SMA is clinically heterogeneous, with disease ranging from severe to mild. Here, we identify a critical threshold of Smn that dictates onset of SMA in the intermediate Smn(2B/-) mouse model. With about 15% normal level of Smn protein, Smn(2B/-) mice display reduced body weight, motor neuron loss and motor defects. Importantly, these mice are phenotype-free until P10 with a median life expectancy of 28 days. They show neuromuscular junction (NMJ) pathology with an inter-muscular differential vulnerability and an association between pre- and post-synaptic defects. Our work suggests that increasing Smn protein levels only minimally could be of significant benefit since Smn(2B/2B) mice are phenotypically normal. Further, the finding that NMJ pathology varies between severe and intermediate SMA mouse models, suggests that future therapies be adapted to the severity of SMA.


PLOS ONE | 2010

Mouse Survival Motor Neuron Alleles That Mimic SMN2 Splicing and Are Inducible Rescue Embryonic Lethality Early in Development but Not Late

Suzan M. Hammond; Rocky G. Gogliotti; Vamshi K. Rao; Ariane Beauvais; Rashmi Kothary; Christine J. DiDonato

Spinal muscular atrophy (SMA) is caused by low survival motor neuron (SMN) levels and patients represent a clinical spectrum due primarily to varying copies of the survival motor neuron-2 (SMN2) gene. Patient and animals studies show that disease severity is abrogated as SMN levels increase. Since therapies currently being pursued target the induction of SMN, it will be important to understand the dosage, timing and cellular requirements of SMN for disease etiology and potential therapeutic intervention. This requires new mouse models that can induce SMN temporally and/or spatially. Here we describe the generation of two hypomorphic Smn alleles, SmnC-T-Neo and Smn2B-Neo. These alleles mimic SMN2 exon 7 splicing, titre Smn levels and are inducible. They were specifically designed so that up to three independent lines of mice could be generated, herein we describe two. In a homozygous state each allele results in embryonic lethality. Analysis of these mutants indicates that greater than 5% of Smn protein is required for normal development. The severe hypomorphic nature of these alleles is caused by inclusion of a loxP-flanked neomycin gene selection cassette in Smn intron 7, which can be removed with Cre recombinase. In vitro and in vivo experiments demonstrate these as inducible Smn alleles. When combined with an inducible Cre mouse, embryonic lethality caused by low Smn levels can be rescued early in gestation but not late. This provides direct genetic evidence that a therapeutic window for SMN inductive therapies may exist. Importantly, these lines fill a void for inducible Smn alleles. They also provide a base from which to generate a large repertoire of SMA models of varying disease severities when combined with other Smn alleles or SMN2-containing mice.


Neurobiology of Disease | 2013

Defects in neuromuscular junction remodelling in the Smn2B/− mouse model of spinal muscular atrophy

Lyndsay M. Murray; Ariane Beauvais; Kunal Bhanot; Rashmi Kothary

Spinal muscular atrophy (SMA) is a devastating childhood motor neuron disease caused by mutations and deletions within the survival motor neuron 1 (SMN1) gene. Although other tissues may be involved, motor neurons remain primary pathological targets, with loss of neuromuscular junctions (NMJs) representing an early and significant event in pathogenesis. Although defects in axonal outgrowth and pathfinding have been observed in cell culture and in lower organisms upon Smn depletion, developmental defects in mouse models have been less obvious. Here, we have employed the Smn(2B/-) mouse model to investigate NMJ remodelling during SMA pathology, induced reinnervation, and paralysis. We show that whilst NMJs are capable of remodelling during pathogenesis, there is a marked reduction in paralysis-induced remodelling and in the nerve-directed re-organisation of acetylcholine receptors. This reduction in remodelling potential could not be attributed to a decreased rate of axonal growth. Finally, we have identified a loss of terminal Schwann cells which could contribute to the defects in remodelling/maintenance observed. Our work demonstrates that there are specific defects in NMJ remodelling in an intermediate SMA mouse model, which could contribute to or underlie pathogenesis in SMA. The development of strategies that can promote the remodelling potential of NMJs may therefore be of significant benefit to SMA patients.


Human Molecular Genetics | 2014

Defects in pancreatic development and glucose metabolism in SMN-depleted mice independent of canonical spinal muscular atrophy neuromuscular pathology

Melissa Bowerman; John-Paul Michalski; Ariane Beauvais; Lyndsay M. Murray; Yves DeRepentigny; Rashmi Kothary

Spinal muscular atrophy (SMA) is characterized by motor neuron loss, caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. We recently identified a novel role for Smn protein in glucose metabolism and pancreatic development in both an intermediate SMA mouse model (Smn2B/−) and type I SMA patients. In the present study, we sought to determine if the observed metabolic and pancreatic defects are SMA-dependent. We employed a line of heterozygous Smn-depleted mice (Smn+/−) that lack the hallmark SMA neuromuscular pathology and overt phenotype. At 1 month of age, pancreatic/metabolic function of Smn+/−mice is indistinguishable from wild type. However, when metabolically challenged with a high-fat diet, Smn+/−mice display abnormal localization of glucagon-producing α-cells within the pancreatic islets and increased hepatic insulin and glucagon sensitivity, through increased p-AKT and p-CREB, respectively. Further, aging results in weight gain, an increased number of insulin-producing β cells, hyperinsulinemia and increased hepatic glucagon sensitivity in Smn+/−mice. Our study uncovers and highlights an important function of Smn protein in pancreatic islet development and glucose metabolism, independent of canonical SMA pathology. These findings suggest that carriers of SMN1 mutations and/or deletions may be at an increased risk of developing pancreatic and glucose metabolism defects, as even small depletions in Smn protein may be a risk factor for diet- and age-dependent development of metabolic disorders.


Skeletal Muscle | 2012

A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts

James D.R. Knight; Ruijun Tian; Robin E. C. Lee; Fangjun Wang; Ariane Beauvais; Hanfa Zou; Lynn A. Megeney; Anne-Claude Gingras; Tony Pawson; Daniel Figeys; Rashmi Kothary

BackgroundThe p38α mitogen-activated protein kinase (MAPK) is a critical mediator of myoblast differentiation, and does so in part through the phosphorylation and regulation of several transcription factors and chromatin remodelling proteins. However, whether p38α is involved in processes other than gene regulation during myogenesis is currently unknown, and why other p38 isoforms cannot compensate for its loss is unclear.MethodsTo further characterise the involvement of p38α during myoblast differentiation, we developed and applied a simple technique for identifying relevant in vivo kinase substrates and their phosphorylation sites. In addition to identifying substrates for one kinase, the technique can be used in vitro to compare multiple kinases in the same experiment, and we made use of this to study the substrate specificities of the p38α and β isoforms.ResultsApplying the technique to p38α resulted in the identification of seven in vivo phosphorylation sites on six proteins, four of which are cytoplasmic, in lysate derived from differentiating myoblasts. An in vitro comparison with p38β revealed that substrate specificity does not discriminate these two isoforms, but rather that their distinguishing characteristic appears to be cellular localisation.ConclusionOur results suggest p38α has a novel cytoplasmic role during myogenesis and that its unique cellular localisation may be why p38β and other isoforms cannot compensate for its absence. The substrate-finding approach presented here also provides a necessary tool for studying the hundreds of protein kinases that exist and for uncovering the deeper mechanisms of phosphorylation-dependent cell signalling.


PLOS ONE | 2011

The proteolipid protein promoter drives expression outside of the oligodendrocyte lineage during embryonic and early postnatal development.

John-Paul Michalski; Carrie L. Anderson; Ariane Beauvais; Yves De Repentigny; Rashmi Kothary

The proteolipid protein (Plp) gene promoter is responsible for driving expression of one of the major components of myelin – PLP and its splice variant DM-20. Both products are classically thought to express predominantly in oligodendrocytes. However, accumulating evidence suggests Plp expression is more widespread than previously thought. In an attempt to create a mouse model for inducing oligodendrocyte-specific gene deletions, we have generated transgenic mice expressing a Cre recombinase cDNA under control of the mouse Plp promoter. We demonstrate Plp promoter driven Cre expression is restricted predominantly to mature oligodendrocytes of the central nervous system (CNS) at postnatal day 28. However, crosses into the Rosa26LacZ and mT/mG reporter mouse lines reveal robust and widespread Cre activity in neuronal tissues at E15.5 and E10.5 that is not strictly oligodendrocyte lineage specific. By P28, all CNS tissues examined displayed high levels of reporter gene expression well outside of defined white matter zones. Importantly, our study reinforces the emerging idea that Plp promoter activity is not restricted to the myelinating cell lineage, but rather, has widespread activity both during embryonic and early postnatal development in the CNS. Specificity of the promoter to the oligodendrocyte cell lineage, as shown through the use of a tamoxifen inducible Plp-CreERt line, occurs only at later postnatal stages. Understanding the temporal shift in Plp driven expression is of consequence when designing experimental models to study oligodendrocyte biology.


FEBS Journal | 2013

G-protein coupled receptor 56 promotes myoblast fusion through serum response factor- and nuclear factor of activated T-cell-mediated signalling but is not essential for muscle development in vivo

Melissa P. Wu; Jamie R. Doyle; Brenda J. Barry; Ariane Beauvais; Anete Rozkalne; Xianhua Piao; Michael W. Lawlor; Alan S. Kopin; Christopher A. Walsh; Emanuela Gussoni

Mammalian muscle cell differentiation is a complex process of multiple steps for which many of the factors involved have not yet been defined. In a screen to identify the regulators of myogenic cell fusion, we found that the gene for G‐protein coupled receptor 56 (GPR56) was transiently up‐regulated during the early fusion of human myoblasts. Human mutations in the gene for GPR56 cause the disease bilateral frontoparietal polymicrogyria; however, the consequences of receptor dysfunction on muscle development have not been explored. Using knockout mice, we defined the role of GPR56 in skeletal muscle. GPR56−/− myoblasts have decreased fusion and smaller myotube sizes in culture. In addition, a loss of GPR56 expression in muscle cells results in decreases or delays in the expression of myogenic differentiation 1, myogenin and nuclear factor of activated T‐cell (NFAT)c2. Our data suggest that these abnormalities result from decreased GPR56‐mediated serum response element and NFAT signalling. Despite these changes, no overt differences in phenotype were identified in the muscle of GPR56 knockout mice, which presented only a mild but statistically significant elevation of serum creatine kinase compared to wild‐type. In agreement with these findings, clinical data from 13 bilateral frontoparietal polymicrogyria patients revealed mild serum creatine kinase increase in only two patients. In summary, targeted disruption of GPR56 in mice results in myoblast abnormalities. The absence of a severe muscle phenotype in GPR56 knockout mice and human patients suggests that other factors may compensate for the lack of this G‐protein coupled receptor during muscle development and that the motor delay observed in these patients is likely not a result of primary muscle abnormalities.

Collaboration


Dive into the Ariane Beauvais's collaboration.

Top Co-Authors

Avatar

Rashmi Kothary

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carrie L. Anderson

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Emanuela Gussoni

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Hong Liu

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

John-Paul Michalski

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Marc-Olivier Deguise

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar

Anete Rozkalne

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Adam N. Baker

Ottawa Hospital Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge