Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ariane Kanicki is active.

Publication


Featured researches published by Ariane Kanicki.


Hearing Research | 2008

Age-related auditory pathology in the CBA/J mouse

Su Hua Sha; Ariane Kanicki; Gary Dootz; Andra E. Talaska; Karin Halsey; David F. Dolan; Richard A. Altschuler; Jochen Schacht

Commercially obtained aged male CBA/J mice presented a complex pattern of hearing loss and morphological changes. A significant threshold shift in auditory brainstem responses (ABR) occurred at 3 months of age at 4 kHz without apparent loss of hair cells, rising slowly at later ages accompanied by loss of apical hair cells. A delayed high-frequency deficit started at 24 kHz around the age of 12 months. At 20-26 months, threshold shifts at 12 and 24 kHz and the accompanying hair cell loss at the base of the cochlea were highly variable with some animals appearing almost normal and others showing large deficits. Spiral ganglion cells degenerated by 18 months in all regions of the cochlea, with cell density reduced by approximately 25%. There was no degeneration of the stria vascularis and the endocochlear potential remained stable from 3 to 25 months of age regardless of whether the animals had normal or highly elevated ABR thresholds. The slow high-frequency hearing loss combined with a modest reduction of ganglion cell density and an unchanged endocochlear potential suggest sensorineural presbycusis. The superimposed early hearing loss at low frequencies, which is not seen in animals bred in-house, may complicate the use of these animals as a presbycusis model.


PLOS ONE | 2012

Hearing Loss and Hair Cell Death in Mice Given the Cholesterol-Chelating Agent Hydroxypropyl-β-Cyclodextrin

Mark A. Crumling; Liqian Liu; Paul V. Thomas; Jennifer Benson; Ariane Kanicki; Lisa L. Kabara; Karin Halsey; David F. Dolan; R. Keith Duncan

Cyclodextrins are sugar compounds that are increasingly finding medicinal uses due to their ability to complex with hydrophobic molecules. One cyclodextrin in particular, 2-hydroxypropyl-β-cyclodextrin (HPβCD), is used as a carrier to solubilize lipophilic drugs and is itself being considered as a therapeutic agent for treatment of Niemann-Pick Type C disease, due to its ability to mobilize cholesterol. Results from toxicological studies suggest that HPβCD is generally safe, but a recent study has found that it causes hearing loss in cats. Whether the hearing loss occurred via death of cochlear hair cells, rendering it permanent, was unexplored. In the present study, we examined peripheral auditory function and cochlear histology in mice after subcutaneous injection of HPβCD to test for hearing loss and correlate any observed auditory deficits with histological findings. On average, auditory brainstem response thresholds were elevated at 4, 16, and 32 kHz in mice one week after treatment with 8,000 mg/kg. In severely affected mice all outer hair cells were missing in the basal half of the cochlea. In many cases, surviving hair cells in the cochlear apex exhibited abnormal punctate distribution of the motor protein prestin, suggesting long term changes to membrane composition and integrity. Mice given a lower dose of 4,000 mg/kg exhibited hearing loss only after repeated doses, but these threshold shifts were temporary. Therefore, cyclodextrin-induced hearing loss was complex, involving cell death and other more subtle influences on cochlear physiology.


Neurobiology of Aging | 2012

Antioxidant-enriched diet does not delay the progression of age-related hearing loss

Su Hua Sha; Ariane Kanicki; Karin Halsey; Kimberly A. Wearne; Jochen Schacht

Oxidative stress has been linked to noise- and drug-induced as well as age-related hearing loss. Antioxidants can attenuate the decline of cochlear structure and function after exposure to noise or drugs, but it is debated as to whether they can protect from age-related hearing loss. In a long-term longitudinal study, 10-month-old female CBA/J mice were placed on either a control or antioxidant-enriched diet and monitored through 24 months of age. Supplementation with vitamins A, C, and E, L-carnitine, and α-lipoic acid significantly increased the antioxidant capacity of inner ear tissues. However, by 24 months of age, the magnitude of hearing loss was equal between the two groups. Likewise, there were no significant differences in hair cell loss or degeneration of spiral ganglion cells. We conclude that dietary manipulations can alter cochlear antioxidant capacity but do not ameliorate age-related sensorineural hearing loss in the CBA/J mouse.


Development | 2012

Macrophage migration inhibitory factor acts as a neurotrophin in the developing inner ear

Lisa M. Bank; Lynne M. Bianchi; Fumi Ebisu; Dov Lerman-Sinkoff; Elizabeth Smiley; Yu Chi Shen; Poornapriya Ramamurthy; Deborah L. Thompson; Therese M. Roth; Christine R. Beck; Matthew Flynn; Ryan Teller; Luming Feng; G. Nicholas Llewellyn; Brandon B. Holmes; Cyrrene Sharples; Jaeda Coutinho-Budd; Stephanie A. Linn; Andrew P. Chervenak; David F. Dolan; Jennifer Benson; Ariane Kanicki; Catherine A. Martin; Richard A. Altschuler; Alicia E. Koch; Ethan M. Jewett; John A. Germiller; Kate F. Barald

This study is the first to demonstrate that macrophage migration inhibitory factor (MIF), an immune system ‘inflammatory’ cytokine that is released by the developing otocyst, plays a role in regulating early innervation of the mouse and chick inner ear. We demonstrate that MIF is a major bioactive component of the previously uncharacterized otocyst-derived factor, which directs initial neurite outgrowth from the statoacoustic ganglion (SAG) to the developing inner ear. Recombinant MIF acts as a neurotrophin in promoting both SAG directional neurite outgrowth and neuronal survival and is expressed in both the developing and mature inner ear of chick and mouse. A MIF receptor, CD74, is found on both embryonic SAG neurons and adult mouse spiral ganglion neurons. Mif knockout mice are hearing impaired and demonstrate altered innervation to the organ of Corti, as well as fewer sensory hair cells. Furthermore, mouse embryonic stem cells become neuron-like when exposed to picomolar levels of MIF, suggesting the general importance of this cytokine in neural development.


Hearing Research | 2004

Induction of heat shock protein 32 (Hsp32) in the rat cochlea following hyperthermia

Damon A. Fairfield; Ariane Kanicki; Margaret I. Lomax; Richard A. Altschuler

The genes for heat shock proteins (Hsps) can be upregulated in response to cellular trauma, resulting in enhanced cell survival and protection. Hsp32, also known as heme oxygenase 1, catalyzes the degradation of heme to produce carbon monoxide and bilirubin, which play a variety of cytoprotective functions at physiological concentrations, and iron, which is rapidly sequestered by the iron-binding protein ferritin. In the present study we examined the expression and localization of Hsp32 in the rat cochlea after heat shock using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), Western blot, and immunocytochemistry. Low levels of constitutive Hsp32 expression were observed in the normal rat cochlea by RT-PCR and Western blot. Hsp32 mRNA (messenger RNA) was present at higher levels in a subfraction containing sensorineural epithelium and lateral wall than in a subfraction containing modiolus. Western blot revealed that Hsp32 protein levels increase in the rat cochlea following heat shock. Immunocytochemistry showed scattered staining of outer hair cells in the organ of Corti of normal untreated rats. Following heat shock Hsp32 is upregulated in outer hair cells and the cells of the stria vascularis. These results suggest a potential role for Hsp32 as a component of the oxidative stress response pathway in the rat cochlea.


Neuroscience | 2015

Age-related changes in auditory nerve–inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice

Richard A. Altschuler; David F. Dolan; Karin Halsey; Ariane Kanicki; N. Deng; Cathy Martin; J. Eberle; David C. Kohrman; Richard A. Miller; Jochen Schacht

This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in gap detection (GD), the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons (SGN), and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in the auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell-auditory nerve connections and a significant reduction in GD. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in GD, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of GD or with the loss of connections, consistent with independent pathological mechanisms.


Hearing Research | 2002

Expression and localization of heat shock factor (Hsf) 1 in the rodent cochlea

Damon A. Fairfield; Ariane Kanicki; Margaret I. Lomax; Richard A. Altschuler

Activation of heat shock factors (Hsfs) is one of the potential mechanisms for regulating the transcription of the heat shock proteins (Hsps) and certain other stress-responsive genes. Reverse transcription polymerase chain reaction (RT-PCR), Western blot and immunocytochemistry were used to examine the expression and localization of Hsf1, the stress-responsive member of the Hsf family, in the rat and mouse cochlea. Cerebellum was used as a positive control. Semi-quantitative RT-PCR of cochlear RNA revealed that Hsf1 was more highly expressed in a subfraction containing sensorineural epithelium and lateral wall than in a subfraction containing modiolus, with the alpha splice form predominant over the beta in both subfractions. Immunocytochemistry showed selective staining in the rodent cochlea. Hsf1 immunostaining was found in the nuclei of inner and outer hair cells in the organ of Corti, spiral ganglion cells in the modiolus, and cells in the marginal and intermediate layers of the stria vascularis. This is largely consistent with where Hsp70 induction is reported. Hsf1 activation following heat shock was examined by Western blot. Hyperthermia resulted in stress-induced Hsf1 hyperphosphorylation in cochlea as well as cerebellum. This hyperphosphorylation as well as the correlation of its localization with Hsp70 induction supports a role for Hsf1 in the cochlear stress response.


Molecular and Cellular Neuroscience | 2012

Nestin-expressing cells in the developing, mature and noise-exposed cochlear epithelium

Reiko Watanabe; Maria Morell; Josef M. Miller; Ariane Kanicki; K. Sue O'Shea; Richard A. Altschuler; Yehoash Raphael

The auditory sensory epithelium in non-mammalian vertebrates can replace lost hair cells by transdifferentiation of supporting cells, but this regenerative ability is lost in the mammalian cochlea. Future cell-based treatment of hearing loss may depend on stem cell transplantation or on transdifferentiation of endogenous cells in the cochlea. For both approaches, identification of cells with stem cell features within the mature cochlea may be useful. Here we use a Nestin-β-gal mouse to examine the presence of Nestin positive cells in the mature auditory epithelium, and determine how overstimulation of the ear impacts these cells. Nestin positive cells were found in the apical turn of the cochlea lateral to the outer hair cell area. This pattern of expression persisted into mature age. The area of Nestin positive cells was increased after the noise lesion. This increase in area coincided with an increase in expression of the Nestin mRNA. The data suggest that cells with potential stem cell features remain in the mature mammalian cochlea, restricted to the apical turn, and that an additional set of signals is necessary to trigger their contribution to cell replacement therapy in the ear. As such, this population of cells could serve to generate cochlear stem cells for research and potential therapy, and may be a target for treatments based on induced transdifferentiation of endogenous cochlear cells.


Neuroscience | 2016

Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus

Takaomi Kurioka; Min Young Lee; Amarins N. Heeringa; Lisa A. Beyer; Donald L. Swiderski; Ariane Kanicki; Lisa L. Kabara; David F. Dolan; Susan E. Shore; Yehoash Raphael

In experimental animal models of auditory hair cell (HC) loss, insults such as noise or ototoxic drugs often lead to secondary changes or degeneration in non-sensory cells and neural components, including reduced density of spiral ganglion neurons, demyelination of auditory nerve fibers and altered cell numbers and innervation patterns in the cochlear nucleus (CN). However, it is not clear whether loss of HCs alone leads to secondary degeneration in these neural components of the auditory pathway. To elucidate this issue, we investigated changes of central components after cochlear insults specific to HCs using diphtheria toxin receptor (DTR) mice expressing DTR only in HCs and exhibiting complete HC loss when injected with diphtheria toxin (DT). We showed that DT-induced HC ablation has no significant impacts on the survival of auditory neurons, central synaptic terminals, and myelin, despite complete HC loss and profound deafness. In contrast, noise exposure induced significant changes in synapses, myelin and CN organization even without loss of inner HCs. We observed a decrease of neuronal size in the auditory pathway, including peripheral axons, spiral ganglion neurons, and CN neurons, likely due to loss of input from the cochlea. Taken together, selective HC ablation and noise exposure showed different patterns of pathology in the auditory pathway and the presence of HCs is not essential for the maintenance of central synaptic connectivity and myelination.


Neuroscience | 2018

Small Arms Fire-like noise: Effects on Hearing Loss, Gap Detection and the Influence of Preventive Treatment

Richard A. Altschuler; Karin Halsey; Ariane Kanicki; Cathy Martin; Diane M. Prieskorn; Susan DeRemer; David F. Dolan

A noise-induced loss of inner hair cell (IHC) - auditory nerve synaptic connections has been suggested as a factor that can trigger the progression of maladaptive plastic changes leading to noise-induced tinnitus. The present study used a military relevant small arms fire (SAF)-like noise (50 biphasic impulses over 2.5 min at 152 dB SPL given unilaterally to the right ear) to induce loss (∼1/3) of IHC synaptic ribbons (associated with synapse loss) in rat cochleae with only minor (less than 10%) loss of outer hair cells. Approximately half of the noise-exposed rats showed poorer Gap Detection post-noise, a behavioral indication suggesting the presence of tinnitus. There was significantly greater loss of IHC ribbons in noise-exposed rats with reduced Gap Detection compared to noise-exposed rats retaining normal Gap Detection. We have previously shown systemic administration of piribedil, memantine, and/or ACEMg significantly reduced loss of IHC ribbons induced by a 3 h 4 kHz octave band 117 dB (SPL) noise. The present study examined if this treatment would also reduce ribbon loss from the SAF-like noise exposure and if this would prevent the reduced Gap Detection. As in the previous study, piribedil, memantine, and ACEMg treatment significantly reduced the noise-induced loss of ribbons, such that it was no longer significantly different from normal. However, it did not prevent development of the reduced Gap Detection indication of tinnitus in all treated noise-exposed rats, reducing the incidence but not reaching significance.

Collaboration


Dive into the Ariane Kanicki's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cathy Martin

Kresge Hearing Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge