Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arianna Crespi is active.

Publication


Featured researches published by Arianna Crespi.


Molecular and Cellular Neuroscience | 2012

Analysis of neuromuscular junctions and effects of anabolic steroid administration in the SOD1G93A mouse model of ALS

Valentina Cappello; Elena Vezzoli; Marco Righi; Matteo Fossati; Raffaella Mariotti; Arianna Crespi; Marco Vincenzo Patruno; Marina Bentivoglio; Grazia Pietrini; Maura Francolini

Several lines of evidence indicate that neuromuscular junction (NMJ) destruction and disassembly is an early phenomenon in amyotrophic lateral sclerosis (ALS). Here we analyzed by confocal and electron microscopy the NMJ structure in the diaphragm of SOD1G93A mice at symptom onset. In these mice, which provide a model for familial ALS, diaphragm denervation (~50%) as well as gastrocnemius denervation (~40%) was found. In addition, the size of the synaptic vesicle pool was reduced and alterations of mitochondria were observed in approximately 40% of the remaining presynaptic terminals. Chronic treatment of SOD1G93A mice with the anabolic steroid nandrolone during the presymptomatic stage preserved the diaphragm muscle mass and features indicative of synaptic activity. These features were represented by the number of vesicles docked within 200 nm from the presynaptic membrane and area of acetylcholine receptor clusters. Structural preservation of mitochondria was documented in presynaptic terminals. However, innervation of diaphragm muscle fibers was only slightly increased in nandrolone-treated SOD1-mutant mice. Altogether the results point out and define fine structural alterations of diaphragm NMJs in the murine model of familial ALS at symptom onset, and indicate that nandrolone may prevent or delay structural alterations in NMJ mitochondria and stimulate presynaptic activity but does not prevent muscle denervation during the disease.


Journal of Cell Science | 2012

LIN7 regulates the filopodium- and neurite-promoting activity of IRSp53

Arianna Crespi; Ilaria Ferrari; Paola Lonati; Andrea Disanza; Diego Fornasari; Giorgio Scita; Valeria Padovano; Grazia Pietrini

Summary The insulin receptor substrate protein of 53 kDa (IRSp53) is crucially involved in the formation of filopodia and neurites through mechanisms that have only partially been clarified. We have investigated the role of the small scaffold protein LIN7, which interacts with IRSp53. We found that formation of actin-filled protrusions in neuronal NSC34 cells and neurites in neuroblastoma N2A cells depends on motifs mediating the LIN7:IRSp53 association, as both the coexpression of LIN7 with IRSp53 or the expression of the L27-IRSp53 chimera (a fusion protein between IRSp53 and the LIN7L27 domain for plasma membrane protein complexes association) prevented actin-deficient protrusions induced by overexpressed IRSp53, and enhanced the formation of actin-filled protrusions. The regulatory role of LIN7 in IRSp53-mediated extension of filopodia in neuronal N2A cells was demonstrated by live-cell imaging experiments. Moreover, LIN7 silencing prevented the extension of filopodia and neurites, induced by ectopic expression of IRSp53 or serum starvation, respectively, in undifferentiated and differentiated N2A cells. The expression of full-length IRSp53 or the LIN7&Dgr;PDZ mutant lacking the domain for association with IRSp53 was unable to restore neuritogenesis in LIN7-silenced cells. Conversely, defective neuritogenesis could be rescued by the expression of RNAi-resistant full-length LIN7 or chimeric L27-IRSp53. Finally, LIN7 silencing prevented the recruitment of IRSp53 in Triton X-100-insoluble complexes, otherwise occurring in differentiated cells. Collectively these data indicate that LIN7 is a novel regulator of IRSp53, and that the association of these proteins is required to promote the formation of actin-dependent filopodia and neurites.


Journal of Biological Chemistry | 2016

Tail-anchored protein insertion in mammals. FUNCTION AND RECIPROCAL INTERACTIONS OF THE TWO SUBUNITS OF THE TRC40 RECEPTOR.

Sara Francesca Colombo; Silvia Cardani; Annalisa Maroli; Adriana Vitiello; Paolo Soffientini; Arianna Crespi; Richard J. Bram; Roberta Benfante; Nica Borgese

The GET (guided entry of tail-anchored proteins)/TRC (transmembrane recognition complex) pathway for tail-anchored protein targeting to the endoplasmic reticulum (ER) has been characterized in detail in yeast and is thought to function similarly in mammals, where the orthologue of the central ATPase, Get3, is known as TRC40 or Asna1. Get3/TRC40 function requires an ER receptor, which in yeast consists of the Get1/Get2 heterotetramer and in mammals of the WRB protein (tryptophan-rich basic protein), homologous to yeast Get1, in combination with CAML (calcium-modulating cyclophilin ligand), which is not homologous to Get2. To better characterize the mammalian receptor, we investigated the role of endogenous WRB and CAML in tail-anchored protein insertion as well as their association, concentration, and stoichiometry in rat liver microsomes and cultured cells. Functional proteoliposomes, reconstituted from a microsomal detergent extract, lost their activity when made with an extract depleted of TRC40-associated proteins or of CAML itself, whereas in vitro synthesized CAML and WRB together were sufficient to confer insertion competence to liposomes. CAML was found to be in ∼5-fold excess over WRB, and alteration of this ratio did not inhibit insertion. Depletion of each subunit affected the levels of the other one; in the case of CAML silencing, this effect was attributable to destabilization of the WRB transcript and not of WRB protein itself. These results reveal unanticipated complexity in the mutual regulation of the TRC40 receptor subunits and raise the question as to the role of the excess CAML in the mammalian ER.


The Journal of Membrane Biology | 2014

ER reorganization is remarkably induced in COS-7 cells accumulating transmembrane protein receptors not competent for export from the endoplasmic reticulum.

Massimo D’Agostino; Arianna Crespi; Elena V. Polishchuk; Serena Generoso; Gianluca Martire; Sara Francesca Colombo; Stefano Bonatti

Abstract The newly synthesized mutant L501fsX533 Frizzled-4 form and the alpha3beta4 nicotinic acetylcholine receptor expressed in the absence of nicotine accumulate in the endoplasmic reticulum of COS-7 cells and induce the formation of large areas of smooth and highly convoluted cisternae. This results in a generalized block of the transport to the Golgi complex of newly synthesized proteins. Intriguingly, both effects happen peculiarly in COS-7 cells; HeLa, Huh-7, and HEK293 cells expressing the two receptors at similar level than COS-7 cells show normal ER and normal transport toward the plasma membrane. These results question the conclusion that a dominant-negative mechanism would explain the dominance of the mutant L501fsX533 Fz4 allele in the transmission of a form of Familial exudative vitreoretinopathy. Moreover, they indicate that the coordination of endoplasmic reticulum homeostasis in COS-7 cells is particularly error prone. This finding suggests that COS-7 cells may be extremely useful to study the molecular mechanisms regulating endoplasmic reticulum size and architecture.


Current Pharmaceutical Design | 2016

Neuronal Acetylcholine Nicotinic Receptors as New Targets for Lung Cancer Treatment

Vanessa Mucchietto; Arianna Crespi; Francesca Fasoli; Francesco Clementi; Cecilia Gotti

Lung cancer is the leading cause of cancer-related deaths worldwide. Smoking accounts for approximately 70% of the cases of non- small cell lung cancer (NSCLC) and 90% of the cases of small-cell lung cancer (SCLC), although some patients develop lung cancer without a history of smoking. Nicotine is the most active addictive component of tobacco smoke. It does not initiate tumorigenesis in humans and rodents, but it alters the pathophysiology of lung cells by inducing the secretion of growth factors, neurotransmitters and cytokines, and promotes tumour growth and metastases by inducing cell cycle progression, migration, invasion, angiogenesis and the evasion of apoptosis. Most of these effects are a result of nicotine binding and activation of cell-surface neuronal nicotinic acetylcholine receptors (nAChRs) and downstream intracellular signalling cascades, and many are blocked by nAChR subtype-selective antagonists. Recent genome-wide association studies have revealed single nucleotide polymorphisms of nAChR subunits that influence nicotine dependence and lung cancer. This review describes the molecular basis of nAChR structural and functional diversity in normal and cancer lung cells, and the genetic alterations facilitating smoking-induced lung cancers. It also summarises current knowledge concerning the intracellular pathways activated by nicotine and other compounds present in tobacco smoke.


Journal of Cell Science | 2011

The POF1B candidate gene for premature ovarian failure regulates epithelial polarity

Valeria Padovano; Ilaria Lucibello; Valentina Alari; Pamela Della Mina; Arianna Crespi; Ilaria Ferrari; Marta Recagni; Donatella Lattuada; Marco Righi; Daniela Toniolo; Antonello Villa; Grazia Pietrini

POF1B is a candidate gene for premature ovarian failure (POF); it is mainly expressed in polarised epithelial tissues, but its function in these tissues and the relationship with the disorder are unknown. Here we show colocalisation of POF1B with markers of both adherens and tight junctions in human jejunum. The tight junction localisation was maintained by the human POF1B stably expressed in the MDCK polarised epithelial cell line, whereas it was lost by the POF1B R329Q variant associated with POF. Localisation of apico-basal polarity markers and ultrastructure of the tight junctions were maintained in cells expressing the mutant. However, tight junction assembly was altered, cells were dysmorphic and the monolayer organisation was also altered in three-dimensional culture systems. Moreover, cells expressing the POF1B R329Q variant showed defects in ciliogenesis and cystogenesis as a result of misorientation of primary cilia and mitotic division. All of these defects were explained by interference of the mutant with the content and organisation of F-actin at the junctions. A role for POF1B in the regulation of the actin cytoskeleton was further verified by shRNA silencing of the endogenous protein in human intestinal Caco-2 cells. Taken together, these data indicate that localisation of POF1B to tight junctions has a key role in the organisation of epithelial monolayers by regulating the actin cytoskeleton.


British Journal of Pharmacology | 2018

Proteins and chemical chaperones involved in neuronal nicotinic receptor expression and function: an update

Arianna Crespi; Sara Francesca Colombo; Cecilia Gotti

Neuronal nicotinic ACh receptors (nAChRs) are a family of ACh‐gated cation channels, and their homeostasis or proteostasis is essential for the correct physiology of the central and peripheral nervous systems. The proteostasis network regulates the folding, assembly, degradation and trafficking of nAChRs in order to ensure their efficient and functional expression at the cell surface. However, as nAChRs are multi‐subunit, multi‐span, integral membrane proteins, the folding and assembly is a very inefficient process, and only a small proportion of subunits can form functional pentamers. Moreover, the efficiency of assembly and trafficking varies widely depending on the nAChR subtypes and the cell type in which they are expressed. A detailed understanding of the mechanisms that regulate the functional expression of nAChRs in neurons and non‐neuronal cells is therefore important. The purpose of this short review is to describe more recent findings concerning the chaperone proteins and target‐specific and target‐nonspecific pharmacological chaperones that modulate the expression of nAChR subtypes, and the possible mechanisms that underlie the dynamic changes of cell surface nAChRs.


Journal of Investigative Dermatology | 2015

POF1B Localizes to Desmosomes and Regulates Cell Adhesion in Human Intestinal and Keratinocyte Cell Lines

Arianna Crespi; Alessandra Bertoni; Ilaria Ferrari; Valeria Padovano; Pamela Della Mina; Emilio Berti; Antonello Villa; Grazia Pietrini

By means of morphological and biochemical criteria, we here provide evidence for the localization and function of premature ovarian failure, 1B (POF1B) in desmosomes. In monolayers of Caco-2 intestinal cells and in stratified HaCaT keratinocytes, endogenous POF1B colocalized with desmoplakin at desmosome plaques and in cytoplasmic particles aligned along intermediate filaments (IFs). POF1B predominantly co-fractionated with desmosomes and IF components and exhibited properties characteristic of desmosomes (i.e., detergent insolubility and calcium independence). The role of NH2 and COOH domains in the association of POF1B with desmosomes and IFs was revealed by transient expression of the truncated protein in Caco-2 cells and in cells lacking desmosomes. The function of POF1B in desmosomes was investigated in HaCaT keratinocytes stably downregulated for POF1B expression. Transmission electron microscopy analysis revealed a decrease in desmosome number and size, and desmosomes of the downregulated keratinocytes displayed weak electron-dense plaques. Desmosome alterations were associated with defects in cell adhesion, as revealed by the reduced resistance to mechanical stress in the dispase fragmentation assay. Moreover, desmosome localization of POF1B was restricted to granular layers in human healthy epidermis, whereas it largely increased in hyperproliferative human skin diseases, thus demonstrating the localization of POF1B also in desmosomes of multistratified epithelia.


European Journal of Cell Biology | 2016

Novel localisation and possible function of LIN7 and IRSp53 in mitochondria of HeLa cells

Ilaria Ferrari; Arianna Crespi; Diego Fornasari; Grazia Pietrini

By means of immunofluorescence and subcellular fractionation experiments, we here demonstrate mitochondrial distribution of LIN7 and IRSp53 in HeLa cells. These peripheral proteins displayed a tight association with mitochondria and coimmunoprecipitated from mitochondrial fractions. In line with a role for LIN7 in the regulation of IRSp53 activity on actin dynamics, the morphology of mitochondria was similarly altered by changing the expression levels of either each protein or both, whereas mitochondrial morphology was preserved in cells overexpressing IRSp53 deleted of its binding domains for LIN7 (IRSp53Δ5) or for actin polymerisation modulators (IRSp53ΔSH3). In particular, the overexpression of full length LIN7 and/or IRSp53 increased the percentage of cells with short mitochondria, while downregulation of the endogenous proteins by shRNAs increased the amount of cells with elongated and perinuclear clustered mitochondria. These mitochondria were only partially resistant to fragmentation induced by dissipation of the mitochondrial membrane potential (i.e. treatment with sodium azide), whereas mitochondria were fully protected by the fission defective mutant Drp1 K38A. Overexpression of LIN7 or IRSp53 did not prevent the formation of hyperfused mitochondria in cells coexpressing the Drp1 K38A mutant, thus suggesting that LIN7-IRSp53 complex requires functional Drp1 to regulate mitochondrial morphology.


Communicative & Integrative Biology | 2012

LIN7-IRSp53: A novel pathway for filopodia and neurite formation?

Ilaria Ferrari; Arianna Crespi; Giorgio Scita; Grazia Pietrini

Filopodia are dynamic, actin-rich finger-like structures that protrude from the cell membrane and play important roles in cell migration and neurite initiation and outgrowth. The insulin receptor substrate protein of 53 kDa (IRSp53) and the mammalian Diaphanous members of the formin family of proteins (mDia) are two key players in the formation of filopodia and neurites. IRSp53 is an adaptor protein that acts at the membrane:actin interface, coupling membrane deformation with F-actin polymerization. mDia formin proteins, instead, can nucleate and polymerize linear actin filaments. Emerging genetic and biochemical evidence indicate that there are multiple and independent pathways leading to filopodium and neurite formation, but the precise molecular components of these pathways remain ill-defined. We recently identified the PDZ domain-containing protein LIN7 as a novel regulator of IRSp53. We further showed that the association between these two proteins is required to promote the formation of filopodia and neurites independently from mDia formin proteins, highlighting novel mechanisms of filopodia and neurite formation.

Collaboration


Dive into the Arianna Crespi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonello Villa

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge