Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arianna Sabò is active.

Publication


Featured researches published by Arianna Sabò.


Nature | 2014

Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis

Arianna Sabò; Theresia R. Kress; Mattia Pelizzola; Stefano de Pretis; Marcin M. Gorski; Alessandra Tesi; Pranami Bora; Mirko Doni; Alessandro Verrecchia; Claudia Tonelli; Giovanni Fagà; Valerio Bianchi; Alberto Ronchi; Diana Low; Heiko Müller; Ernesto Guccione; Stefano Campaner; Bruno Amati

The c-myc proto-oncogene product, Myc, is a transcription factor that binds thousands of genomic loci. Recent work suggested that rather than up- and downregulating selected groups of genes, Myc targets all active promoters and enhancers in the genome (a phenomenon termed ‘invasion’) and acts as a general amplifier of transcription. However, the available data did not readily discriminate between direct and indirect effects of Myc on RNA biogenesis. We addressed this issue with genome-wide chromatin immunoprecipitation and RNA expression profiles during B-cell lymphomagenesis in mice, in cultured B cells and fibroblasts. Consistent with long-standing observations, we detected general increases in total RNA or messenger RNA copies per cell (hereby termed ‘amplification’) when comparing actively proliferating cells with control quiescent cells: this was true whether cells were stimulated by mitogens (requiring endogenous Myc for a proliferative response) or by deregulated, oncogenic Myc activity. RNA amplification and promoter/enhancer invasion by Myc were separable phenomena that could occur without one another. Moreover, whether or not associated with RNA amplification, Myc drove the differential expression of distinct subsets of target genes. Hence, although having the potential to interact with all active or poised regulatory elements in the genome, Myc does not directly act as a global transcriptional amplifier. Instead, our results indicate that Myc activates and represses transcription of discrete gene sets, leading to changes in cellular state that can in turn feed back on global RNA production and turnover.


Nature Reviews Cancer | 2015

MYC: connecting selective transcriptional control to global RNA production.

Theresia R. Kress; Arianna Sabò; Bruno Amati

Two opposing models have been proposed to describe the function of the MYC oncoprotein in shaping cellular transcriptomes: one posits that MYC amplifies transcription at all active loci; the other that MYC differentially controls discrete sets of genes, the products of which affect global transcript levels. Here, we argue that differential gene regulation by MYC is the sole unifying model that is consistent with all available data. Among other effects, MYC endows cells with physiological and metabolic changes that have the potential to feed back on global RNA production, processing and turnover. The field is progressing steadily towards a full characterization of the MYC-regulated genes and pathways that mediate these biological effects and — by the same token — endow MYC with its pervasive oncogenic potential.


Nature | 2015

MYC regulates the core pre-mRNA splicing machinery as an essential step in lymphomagenesis

Cheryl M. Koh; Marco Bezzi; Diana H.P. Low; Wei X ia Ang; Muthafar Al-Haddawi; Soo Yong Tan; Motomi Osato; Arianna Sabò; Bruno Amati; Keng B oon Wee; Ernesto Guccione

Deregulated expression of the MYC transcription factor occurs in most human cancers and correlates with high proliferation, reprogrammed cellular metabolism and poor prognosis. Overexpressed MYC binds to virtually all active promoters within a cell, although with different binding affinities, and modulates the expression of distinct subsets of genes. However, the critical effectors of MYC in tumorigenesis remain largely unknown. Here we show that during lymphomagenesis in Eµ-myc transgenic mice, MYC directly upregulates the transcription of the core small nuclear ribonucleoprotein particle assembly genes, including Prmt5, an arginine methyltransferase that methylates Sm proteins. This coordinated regulatory effect is critical for the core biogenesis of small nuclear ribonucleoprotein particles, effective pre-messenger-RNA splicing, cell survival and proliferation. Our results demonstrate that MYC maintains the splicing fidelity of exons with a weak 5′ donor site. Additionally, we identify pre-messenger-RNAs that are particularly sensitive to the perturbation of the MYC–PRMT5 axis, resulting in either intron retention (for example, Dvl1) or exon skipping (for example, Atr, Ep400). Using antisense oligonucleotides, we demonstrate the contribution of these splicing defects to the anti-proliferative/apoptotic phenotype observed in PRMT5-depleted Eµ-myc B cells. We conclude that, in addition to its well-documented oncogenic functions in transcription and translation, MYC also safeguards proper pre-messenger-RNA splicing as an essential step in lymphomagenesis.


Molecular and Cellular Biology | 2008

Acetylation of Conserved Lysines in the Catalytic Core of Cyclin-Dependent Kinase 9 Inhibits Kinase Activity and Regulates Transcription

Arianna Sabò; Marina Lusic; Anna Cereseto; Mauro Giacca

ABSTRACT Promoter clearance and transcriptional processivity in eukaryotic cells are fundamentally regulated by the phosphorylation of the carboxy-terminal domain of RNA polymerase II (RNAPII). One of the kinases that essentially performs this function is P-TEFb (positive transcription elongation factor b), which is composed of cyclin-dependent kinase 9 (CDK9) associated with members of the cyclin T family. Here we show that cellular GCN5 and P/CAF, members of the GCN5-related N-acetyltransferase family of histone acetyltransferases, regulate CDK9 function by specifically acetylating the catalytic core of the enzyme and, in particular, a lysine that is essential for ATP coordination and the phosphotransfer reaction. Acetylation markedly reduces both the kinase function and transcriptional activity of P-TEFb. In contrast to unmodified CDK9, the acetylated fraction of the enzyme is specifically found in the insoluble nuclear matrix compartment. Acetylated CDK9 associates with the transcriptionally silent human immunodeficiency virus type 1 provirus; upon transcriptional activation, it is replaced by the unmodified form, which is involved in the elongating phase of transcription marked by Ser2-phosphorylated RNAPII. Given the conservation of the CDK9 acetylated residues in the catalytic task of virtually all CDK proteins, we anticipate that this mechanism of regulation might play a broader role in controlling the function of other members of this kinase family.


Cold Spring Harbor Perspectives in Medicine | 2014

Genome Recognition by MYC

Arianna Sabò; Bruno Amati

MYC dimerizes with MAX to bind DNA, with a preference for the E-box consensus CACGTG and several variant motifs. In cells, MYC binds DNA preferentially within transcriptionally active promoter regions. Although several thousand promoters are bound under physiological (low MYC) conditions, these represent only a fraction of all accessible, active promoters. MYC overexpression-as commonly observed in cancer cells-leads to invasion of virtually all active promoters, as well as of distal enhancer elements. We summarize here what is currently known about the mechanisms that may guide this process. We propose that binding site recognition is determined by low-affinity protein-protein interactions between MYC/MAX dimers and components of the basal transcriptional machinery, other chromatin-associated protein complexes, and/or DNA-bound transcription factors. DNA binding occurs subsequently, without an obligate requirement for sequence recognition. Local DNA scanning then leads to preferential stabilization of the MYC/MAX dimer on high-affinity DNA elements. This model is consistent with the invasion of all active promoters that occurs at elevated MYC levels, but posits that important differences in affinity persist between physiological target sites and the newly invaded elements, which may not all be bound in a productive regulatory mode. The implications of this model for transcriptional control by MYC in normal and cancer cells are discussed in the light of the latest literature.


Nature Immunology | 2017

Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk

Viviana Piccolo; Alessia Curina; Marco Genua; Serena Ghisletti; Marta Simonatto; Arianna Sabò; Bruno Amati; Renato Ostuni; Gioacchino Natoli

Stimulation of macrophages with interferon-γ (IFN-γ) and interleukin 4 (IL-4) triggers distinct and opposing activation programs. During mixed infections or cancer, macrophages are often exposed to both cytokines, but how these two programs influence each other remains unclear. We found that IFN-γ and IL-4 mutually inhibited the epigenomic and transcriptional changes induced by each cytokine alone. Computational and functional analyses revealed the genomic bases for gene-specific cross-repression. For instance, while binding motifs for the transcription factors STAT1 and IRF1 were associated with robust and IL-4-resistant responses to IFN-γ, their coexistence with binding sites for auxiliary transcription factors such as AP-1 generated vulnerability to IL-4-mediated inhibition. These data provide a core mechanistic framework for the integration of signals that control macrophage activation in complex environmental conditions.


BioEssays | 2016

Targeting MYC in cancer therapy: RNA processing offers new opportunities

Cheryl M. Koh; Arianna Sabò; Ernesto Guccione

MYC is a transcription factor, which not only directly modulates multiple aspects of transcription and co‐transcriptional processing (e.g. RNA‐Polymerase II initiation, elongation, and mRNA capping), but also indirectly influences several steps of RNA metabolism, including both constitutive and alternative splicing, mRNA stability, and translation efficiency. As MYC is an oncoprotein whose expression is deregulated in multiple human cancers, identifying its critical downstream activities in tumors is of key importance for designing effective therapeutic strategies. With this knowledge and recent technological advances, we now have multiple angles to reach the goal of targeting MYC in tumors, ranging from the direct reduction of MYC levels, to the dampening of selected house‐keeping functions in MYC‐overexpressing cells, to more targeted approaches based on MYC‐induced secondary effects.


PLOS ONE | 2014

SUMOylation of Myc-Family Proteins

Arianna Sabò; Mirko Doni; Bruno Amati

Myc-family proteins are key controllers of the metabolic and proliferative status of the cell, and are subjected to a complex network of regulatory events that guarantee their efficient and fast modulation by extracellular stimuli. Hence, unbalances in regulatory mechanisms leading to altered Myc levels or activities are often reported in cancer cells. Here we show that c- and N-Myc are conjugated to SUMO proteins at conserved lysines in their C-terminal domain. No obvious effects of SUMOylation were detected on bulk N-Myc stability or activities, including the regulation of transcription, proliferation or apoptosis. N-Myc SUMOylation could be induced by cellular stresses, such as heat shock and proteasome inhibition, and in all instances concerned a small fraction of the N-Myc protein. We surmise that, as shown for other substrates, SUMOylation may be part of a quality-control mechanism acting on misfolded Myc proteins.


Proteins | 2005

Insights on HIV-1 Tat:P/CAF bromodomain molecular recognition from in vivo experiments and molecular dynamics simulations

Sergio Pantano; Alessandro Marcello; Aldo Ferrari; Daniele Gaudiosi; Arianna Sabò; Vittorio Pellegrini; Fabio Beltram; Mauro Giacca; Paolo Carloni

Structural and functional studies indicate that, through its bromodomain, the cellular acetyltransferase P/CAF binds the acetylated Tat protein of human immunodeficiency virus type 1 (HIV‐1) and promotes transcriptional activation of the integrated provirus. Based on the NMR structure of P/CAF complexed with an acetylated Tat peptide, here we use molecular dynamics simulations to construct a model describing the interaction between full length Tat and the P/CAF bromodomain. Our calculations show that the protein–protein interface involves hydrophobic interactions between the P/CAF ZA loop and the Tat core domain. In particular, tyrosines 760 and 761 of P/CAF, two residues that are highly conserved in most known bromodomains, play an essential role for the binding. Fluorescence resonance energy transfer (FRET) experiments performed in this work demonstrate that P/CAF proteins in which these tyrosines are mutated into hydrophilic residues neither bind to Tat inside the cells nor mediate Tat transactivation. The combination of theoretical and in vivo studies provides new insights into the specificity of bromodomain recognition. Proteins 2006.


Oncotarget | 2015

Genome-wide analysis of p53 transcriptional programs in B cells upon exposure to genotoxic stress in vivo

Claudia Tonelli; Salvatore Bianchi; Luca Rotta; Thelma Capra; Arianna Sabò; Stefano Campaner; Bruno Amati

The tumor suppressor p53 is a transcription factor that coordinates the cellular response to DNA damage. Here we provide an integrated analysis of p53 genomic occupancy and p53-dependent gene regulation in the splenic B and non-B cell compartments of mice exposed to whole-body ionizing radiation, providing insight into general principles of p53 activity in vivo. In unstressed conditions, p53 bound few genomic targets; induction of p53 by ionizing radiation increased the number of p53 bound sites, leading to highly overlapping profiles in the different cell types. Comparison of these profiles with chromatin features in unstressed B cells revealed that, upon activation, p53 localized at active promoters, distal enhancers, and a smaller set of unmarked distal regions. At promoters, recognition of the canonical p53 motif as well as binding strength were associated with p53-dependent transcriptional activation, but not repression, indicating that the latter was most likely indirect. p53-activated targets constituted the core of a cell type-independent response, superimposed onto a cell type-specific program. Core response genes included most of the known p53-regulated genes, as well as many new ones. Our data represent a unique characterization of the p53-regulated response to ionizing radiation in vivo.

Collaboration


Dive into the Arianna Sabò's collaboration.

Top Co-Authors

Avatar

Bruno Amati

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Stefano Campaner

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Mattia Pelizzola

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Mirko Doni

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Theresia R. Kress

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Verrecchia

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Claudia Tonelli

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Stefano de Pretis

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Alessandra Tesi

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge