Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arianna Tavanti is active.

Publication


Featured researches published by Arianna Tavanti.


Journal of Clinical Microbiology | 2005

Candida orthopsilosis and Candida metapsilosis spp. nov. To Replace Candida parapsilosis Groups II and III

Arianna Tavanti; Amanda D. Davidson; Neil A. R. Gow; Martin C. J. Maiden; Frank C. Odds

ABSTRACT Two new species, Candida orthopsilosis and C. metapsilosis, are proposed to replace the existing designations of C. parapsilosis groups II and III, respectively. The species C. parapsilosis is retained for group I isolates. Attempts to construct a multilocus sequence typing scheme to differentiate individual strains of C. parapsilosis instead revealed fixed DNA sequence differences between pairs of subgroups in four genes: COX3, L1A1, SADH, and SYA1. PCR amplicons for sequencing were obtained for these four plus a further seven genes from 21 group I isolates. For nine group II isolates, PCR products were obtained from only 5 of the 11 genes, and for two group III isolates PCR products were obtained from a different set of 5 genes. Three of the PCR products from group II and III isolates differed in size from the group I products. Cluster analysis of sequence polymorphisms from COX3, SADH, and SYA1, which were common to the three groups, consistently separated the isolates into three distinct sets. All of these differences, together with DNA sequence similarities <90% in the ITS1 sequence, suggest the subgroups should be afforded species status. The near absence of DNA sequence variability among isolates of C. parapsilosis and relatively high levels of sequence variability among isolates of C. orthopsilosis suggest that the former species may have evolved very recently from the latter.


Eukaryotic Cell | 2007

Molecular Phylogenetics of Candida albicans

Frank C. Odds; Marie-Elisabeth Bougnoux; Duncan J. Shaw; Judith M. Bain; Amanda D. Davidson; Dorothée Diogo; Mette D. Jacobsen; Maud Lecomte; Shu-Ying Li; Arianna Tavanti; Martin C. J. Maiden; Neil A. R. Gow; Christophe d'Enfert

ABSTRACT We analyzed data on multilocus sequence typing (MLST), ABC typing, mating type-like locus (MAT) status, and antifungal susceptibility for a panel of 1,391 Candida albicans isolates. Almost all (96.7%) of the isolates could be assigned by MLST to one of 17 clades. eBURST analysis revealed 53 clonal clusters. Diploid sequence type 69 was the most common MLST strain type and the founder of the largest clonal cluster, and examples were found among isolates from all parts of the world. ABC types and geographical origins showed statistically significant variations among clades by univariate analysis of variance, but anatomical source and antifungal susceptibility data were not significantly associated. A separate analysis limited to European isolates, thereby minimizing geographical effects, showed significant differences in the proportions of isolates from blood, commensal carriage, and superficial infections among the five most populous clades. The proportion of isolates with low antifungal susceptibility was highest for MAT homozygous a/a types and then α/α types and was lowest for heterozygous a/α types. The tree of clades defined by MLST was not congruent with trees generated from the individual gene fragments sequenced, implying a separate evolutionary history for each fragment. Analysis of nucleic acid variation among loci and within loci supported recombination. Computational haplotype analysis showed a high frequency of recombination events, suggesting that isolates had mixed evolutionary histories resembling those of a sexually reproducing species.


Journal of Clinical Microbiology | 2003

Collaborative Consensus for Optimized Multilocus Sequence Typing of Candida albicans

Marie-Elisabeth Bougnoux; Arianna Tavanti; C. Bouchier; Neil Andrew Robert Gow; A. Magnier; Amanda D. Davidson; Martin C. J. Maiden; Christophe d'Enfert; Frank C. Odds

ABSTRACT A panel of 86 different Candida albicans isolates was subjected to multilocus sequence typing (MLST) in two laboratories to obtain sequence data for 10 published housekeeping gene fragments. Analysis of data for all possible combinations of five, six, seven, eight, and nine of the fragments showed that a set comprising the fragments AAT1a, ACC1, ADP1, MPIb, SYA1, VPS13, and ZWF1b was the smallest that yielded 86 unique diploid sequence types for the 86 isolates. This set is recommended for future MLST with C. albicans.


Journal of Clinical Microbiology | 2005

Population Structure and Properties of Candida albicans, as Determined by Multilocus Sequence Typing

Arianna Tavanti; Amanda D. Davidson; Mark J. Fordyce; Neil A. R. Gow; Martin C. J. Maiden; Frank C. Odds

ABSTRACT We submitted a panel of 416 isolates of Candida albicans from separate sources to multilocus sequence typing (MLST). The data generated determined a population structure in which four major clades of closely related isolates were delineated, together with eight minor clades comprising five or more isolates. By Fishers exact test, a statistically significant association was found between particular clades and the anatomical source, geographical source, ABC genotype, decade of isolation, and homozygosity versus heterozygosity at the mating type-like locus (MTL) of the isolates in the clade. However, these associations may have been influenced by confounding variables, since in a univariate analysis of variance, only the clade associations with ABC type and anatomical source emerged as statistically significant, providing the first indication of possible differences between C. albicans strain type clades and their propensity to infect or colonize different anatomical locations. There were no significant differences between clades with respect to distributions of isolates resistant to fluconazole, itraconazole, or flucytosine. However, the majority of flucytosine-resistant isolates belonged to clade 1, and these isolates, but not flucytosine-resistant isolates in other clades, bore a unique mutation in the FUR1 gene that probably accounts for their resistance. A significantly higher proportion of isolates resistant to fluconazole, itraconazole, and flucytosine were homozygous at the MTL, suggesting that antifungal pressure may trigger a common mechanism that leads both to resistance and to MTL homozygosity. The utility of MLST for determining clade assignments of clinical isolates will form the basis for strain selection for future research into C. albicans virulence.


Journal of Clinical Microbiology | 2002

Horizontal Transmission of Candida parapsilosis Candidemia in a Neonatal Intensive Care Unit

Antonella Lupetti; Arianna Tavanti; Paola Davini; Emilia Ghelardi; Valerio Corsini; I Merusi; Antonio Boldrini; Mario Campa; Sonia Senesi

ABSTRACT This report describes the nosocomial acquisition of Candida parapsilosis candidemia by one of the six premature newborns housed in the same room of a neonatal intensive care unit at the Ospedale Santa Chiara, Pisa, Italy. The infant had progeria, a disorder characterized by retarded physical development and progressive senile degeneration. The infant, who was not found to harbor C. parapsilosis at the time of his admission to the intensive care unit, had exhibited symptomatic conjunctivitis before the onset of a severe bloodstream infection. In order to evaluate the source of infection and the route of transmission, two independent molecular typing methods were used to determine the genetic relatedness among the isolates recovered from the newborn, the inanimate hospital environment, hospital personnel, topically and intravenously administered medicaments, and indwelling catheters. Among the isolates collected, only those recovered from the hands of two nurses attending the newborns and from both the conjunctiva and the blood of the infected infant were genetically indistinguishable. Since C. parapsilosis was never recovered from indwelling catheters or from any of the drugs administered to the newborn, we concluded that (i) horizontal transmission of C. parapsilosis occurred through direct interaction between nurses and the newborn and (ii) the conjunctiva was the site through which C. parapsilosis entered the bloodstream. This finding highlights the possibility that a previous C. parapsilosis colonization and/or infection of other body sites may be a predisposing condition for subsequent C. parapsilosis hematogenous dissemination in severely ill newborns.


Journal of Clinical Microbiology | 2007

Multilocus sequence typing of the pathogenic fungus Aspergillus fumigatus

Judith M. Bain; Arianna Tavanti; Amanda D. Davidson; Mette D. Jacobsen; Duncan J. Shaw; Neil Andrew Robert Gow; Frank C. Odds

ABSTRACT A multilocus sequence typing (MLST) scheme was devised for Aspergillus fumigatus. The system involved sequencing seven gene fragments and was applied to a panel of 100 isolates of A. fumigatus from diverse sources. Thirty different sequence types were found among the 100 isolates, and 93% of the isolates differed from the other isolates by only one allele sequence, forming a single clonal cluster as indicated by the eBURST algorithm. The discriminatory power of the MLST method was only 0.93. These results strongly indicate that A. fumigatus is a species of a relatively recent origin, with low levels of sequence dissimilarity. Typing methods based on variable numbers of tandem repeats offer higher levels of strain discrimination. Mating type data for the 100 isolates showed that 71 isolates were type MAT1-2 and 29 isolates were MAT1-1.


Journal of Clinical Microbiology | 2006

Candida albicans Strain Maintenance, Replacement, and Microvariation Demonstrated by Multilocus Sequence Typing

Frank C. Odds; Amanda D. Davidson; Mette D. Jacobsen; Arianna Tavanti; Julie A. Whyte; C. C. Kibbler; David Ellis; Martin C. J. Maiden; Duncan J. Shaw; Neil Andrew Robert Gow

ABSTRACT We typed 165 Candida albicans isolates from 44 different sources by multilocus sequence typing (MLST) and ABC typing of rRNA genes and determined their homozygosity or heterozygosity at the mating-type-like locus (MTL). The isolates represented pairs or larger sets from individual sources, which allowed the determination of strain diversity within patients. A comparison of replicate sequence data determined a reproducibility threshold for regarding isolates as MLST indistinguishable. For 36 isolate sets, MLST and ABC typing showed indistinguishable or highly related strain types among isolates from different sites or from the same site at different times from each patient. This observation included 11 sets with at least one isolate from a blood culture and a nonsterile site from the same patient. For one patient, strain replacement was evidenced in the form of two sets of isolates from different hospital admissions where the strain types within each set were nearly identical but where the two sets differed both by MLST and ABC typing. MLST therefore confirms the existing view of C. albicans strain carriage. Microvariation, evidenced as small differences between MLST types, resulted in most instances from a loss of heterozygosity at one or more of the sequenced loci. Among isolate sets that showed major strain type differences, some isolates could be excluded as likely examples of handling errors during storage. However, for a minority of isolates, intermittent differences in ABC type for tightly clustered MLST types and intermittent appearances of MTL homozygosity lead us to propose that some C. albicans isolates, or all isolates under yet-to-be-determined conditions, maintain a high level of genetic diversity by mechanisms such as recombination, gene conversion, or chromosomal ploidy change.


Journal of Clinical Microbiology | 2003

OPTIMIZATION AND VALIDATION OF MULTILOCUS SEQUENCE TYPING FOR CANDIDA ALBICANS

Arianna Tavanti; Neil A. R. Gow; Sonia Senesi; Martin C. J. Maiden; Frank C. Odds

ABSTRACT Multilocus sequence typing (MLST) was applied to 75 Candida albicans isolates, including 2 that were expected to be identical, 48 that came from diverse geographical and clinical sources, and 15 that were sequential isolates from two patients. DNA fragments (≈500 bp) of eight genes encoding housekeeping functions were sequenced, including four that have been described before for C. albicans MLST, and four new gene fragments, AAT1a, AAT1b, MPI, and ZWF1. In total, 87 polymorphic sites were found among 50 notionally different isolates, giving 46 unique sequence types, underlining the power of MLST to differentiate isolates for epidemiological studies. Additional typing information was obtained by detecting variations in size at the transcribed spacer region of the 25S rRNA gene and tests for homozygosity at the mating type-like (MTL) locus. The stability of MLST was confirmed in two sets of consecutive isolates from two patients. In each set the isolates were identical or varied by a single nucleotide. Reference strain SC5314 and a derived mutant, CAF2, gave identical MLST types. Heterozygous polymorphisms were found in at least one isolate for all but 16 (18.4%) of the variable nucleotides, and 35 (41%) of the 87 individual sequence changes generated nonsynonymous amino acids. Cloning and restriction digestion of a gene fragment containing heterozygous polymorphisms indicated that the heterozygosity was genuine and not the result of sequencing errors. Our data validate and extend previous MLST results for C. albicans, and we propose an optimized system based on sequencing eight gene fragments for routine MLST with this species.


Journal of Clinical Microbiology | 2005

Multilocus Sequence Typing for Differentiation of Strains of Candida tropicalis

Arianna Tavanti; Amanda D. Davidson; Elizabeth M. Johnson; Martin C. J. Maiden; Duncan J. Shaw; Neil A. R. Gow; Frank C. Odds

ABSTRACT A system is described for typing isolates of the pathogenic fungus Candida tropicalis, based on sequence polymorphisms in fragments of six genes: ICL1, MDR1, SAPT2, SAPT4, XYR1, and ZWF1a. The system differentiated 87 diploid sequence types (DSTs) among a total of 106 isolates tested or 80 DSTs among 88 isolates from unique sources. Replicate isolates from the same source clustered together with high statistical similarity, with the exception of one isolate. However, a clade of very closely related isolates included replicate isolates from three different patients, as well as single isolates from eight other patients. This clade, provisionally designated clade 1, was one of three clusters of isolates with high statistical similarity. Five of six isolates in one cluster that may acquire clade status were resistant to flucytosine. This study adds C. tropicalis to Candida albicans and Candida glabrata as Candida species for which a multilocus sequence typing (MLST) system has been set up. The C. tropicalis MLST database can be accessed at http://pubmlst.org/ctropicalis/ .


Journal of Clinical Microbiology | 2007

Genotyping of Candida orthopsilosis Clinical Isolates by Amplification Fragment Length Polymorphism Reveals Genetic Diversity among Independent Isolates and Strain Maintenance within Patients

Arianna Tavanti; Lambert A.M. Hensgens; Emilia Ghelardi; Mario Campa; Sonia Senesi

ABSTRACT Candida parapsilosis former groups II and III have recently been established as independent species named C. orthopsilosis and C. metapsilosis, respectively. In this report, 400 isolates (290 patients) previously classified as C. parapsilosis by conventional laboratory tests were screened by BanI digestion profile analysis of the secondary alcohol dehydrogenase gene fragment and by amplification fragment length polymorphism (AFLP). Thirty-three strains collected from 13 patients were identified as C. orthopsilosis, thus giving the first retrospective evidence that C. orthopsilosis was responsible for 4.5% of the infections/colonization attributed to C. parapsilosis. AFLP was proven to unambiguously identify C. orthopsilosis at the species level and efficiently delineate intraspecific genetic relatedness. A high percentage of polymorphic AFLP bands was observed for independent isolates collected from each patient. Statistical analysis of the pairwise genetic distances and bootstrapping revealed that clonal reproduction and recombination both contribute to C. orthopsilosis genetic population structure. AFLP patterns of sequential isolates obtained from two patients demonstrated that a successful strain colonization within the same patient occurred, as revealed by strain maintenance in various body sites. No association between AFLP markers and drug resistance was observed, and none of the clinical C. orthopsilosis isolates were found to produce biofilm in vitro.

Collaboration


Dive into the Arianna Tavanti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge