Ariberto Fassati
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ariberto Fassati.
Cell | 2006
Claudio Murgia; Jonathan K. Pritchard; Su Yeon Kim; Ariberto Fassati; Robin A. Weiss
The transmissible agent causing canine transmissible venereal tumor (CTVT) is thought to be the tumor cell itself. To test this hypothesis, we analyzed genetic markers including major histocompatibility (MHC) genes, microsatellites, and mitochondrial DNA (mtDNA) in naturally occurring tumors and matched blood samples. In each case, the tumor is genetically distinct from its host. Moreover, tumors collected from 40 dogs in 5 continents are derived from a single neoplastic clone that has diverged into two subclades. Phylogenetic analyses indicate that CTVT most likely originated from a wolf or an East Asian breed of dog between 200 and 2500 years ago. Although CTVT is highly aneuploid, it has a remarkably stable genotype. During progressive growth, CTVT downmodulates MHC antigen expression. Our findings have implications for understanding genome instability in cancer, natural transplantation of allografts, and the capacity of a somatic cell to evolve into a transmissible parasite.
The EMBO Journal | 2003
Ariberto Fassati; Dirk Görlich; Ian F. Harrison; Lyubov Zaytseva; José-Manuel Mingot
Human immunodeficiency virus type 1 (HIV‐1), like other lentiviruses, can infect non‐dividing cells. This property depends on the active nuclear import of its intracellular reverse transcription complex (RTC). We have studied nuclear import of purified HIV‐1 RTCs in primary macrophages and found that importin 7, an import receptor for ribosomal proteins and histone H1, is involved in the process. Nuclear import of RTCs requires, in addition, energy and the com ponents of the Ran system. Depletion of importin 7 from cultured cells by small interfering RNA inhibits HIV‐1 infection. These results provide a new insight into the molecular mechanism for HIV‐1 nuclear import and reveal potential targets for therapeutic intervention.
Traffic | 2003
Urs F. Greber; Ariberto Fassati
The genomes of many viruses traffic into the nucleus, where they are either integrated into host chromosomes or maintained as episomal DNA and then transcriptionally activated or silenced. Here, we discuss the existing evidence on how the lentiviruses, adenoviruses, herpesviruses, hepadnaviruses and autonomous parvoviruses enter the nucleus. Depending on the size of the capsid enclosing the genome, three principles of viral nucleic acids import are discussed. The first principle is that the capsid disassembles in the cytosol or in a docked state at the nuclear pore complex and a subviral genomic complex is trafficked through the pore. Second, the genome is injected from a capsid that is docked to the pore complex, and third, import factors are recruited to cytosolic capsids to increase capsid affinity to the pore complex, mediate translocation and allow disassembly in the nucleoplasm.
PLOS Pathogens | 2011
Lihong Zhou; Elena Sokolskaja; Clare Jolly; William James; Sally A. Cowley; Ariberto Fassati
The HIV/AIDS pandemic is a major global health threat and understanding the detailed molecular mechanisms of HIV replication is critical for the development of novel therapeutics. To replicate, HIV-1 must access the nucleus of infected cells and integrate into host chromosomes, however little is known about the events occurring post-nuclear entry but before integration. Here we show that the karyopherin Transportin 3 (Tnp3) promotes HIV-1 integration in different cell types. Furthermore Tnp3 binds the viral capsid proteins and tRNAs incorporated into viral particles. Interaction between Tnp3, capsid and tRNAs is stronger in the presence of RanGTP, consistent with the possibility that Tnp3 is an export factor for these substrates. In agreement with this interpretation, we found that Tnp3 exports from the nuclei viral tRNAs in a RanGTP-dependent way. Tnp3 also binds and exports from the nuclei some species of cellular tRNAs with a defective 3′CCA end. Depletion of Tnp3 results in a re-distribution of HIV-1 capsid proteins between nucleus and cytoplasm however HIV-1 bearing the N74D mutation in capsid, which is insensitive to Tnp3 depletion, does not show nucleocytoplasmic redistribution of capsid proteins. We propose that Tnp3 promotes HIV-1 infection by displacing any capsid and tRNA that remain bound to the pre-integration complex after nuclear entry to facilitate integration. The results also provide evidence for a novel tRNA nucleocytoplasmic trafficking pathway in human cells.
PLOS Biology | 2006
Lyubov Zaitseva; Richard Myers; Ariberto Fassati
Infection of non-dividing cells is a biological property of HIV-1 crucial for virus transmission and AIDS pathogenesis. This property depends on nuclear import of the intracellular reverse transcription and pre-integration complexes (RTCs/PICs). To identify cellular factors involved in nuclear import of HIV-1 RTCs, cytosolic extracts were fractionated by chromatography and import activity examined by the nuclear import assay. A near-homogeneous fraction was obtained, which was active in inducing nuclear import of purified and labeled RTCs. The active fraction contained tRNAs, mostly with defective 3′ CCA ends. Such tRNAs promoted HIV-1 RTC nuclear import when synthesized in vitro. Active tRNAs were incorporated into and recovered from virus particles. Mutational analyses indicated that the anticodon loop mediated binding to the viral complex whereas the T-arm may interact with cellular factors involved in nuclear import. These tRNA species efficiently accumulated into the nucleus on their own in a energy- and temperature-dependent way. An HIV-1 mutant containing MLV gag did not incorporate tRNA species capable of inducing HIV-1 RTC nuclear import and failed to infect cell cycle–arrested cells. Here we provide evidence that at least some tRNA species can be imported into the nucleus of human cells and promote HIV-1 nuclear import.
Science | 2014
Elizabeth P. Murchison; David C. Wedge; Ludmil B. Alexandrov; Beiyuan Fu; Inigo Martincorena; Zemin Ning; Jose M. C. Tubio; Emma I. Werner; Jan Allen; Andrigo Barboza De Nardi; Edward M. Donelan; G. Marino; Ariberto Fassati; Peter J. Campbell; Fengtang Yang; Austin Burt; Robin A. Weiss; Michael R. Stratton
Canine transmissible venereal tumor (CTVT) is the oldest known somatic cell lineage. It is a transmissible cancer that propagates naturally in dogs. We sequenced the genomes of two CTVT tumors and found that CTVT has acquired 1.9 million somatic substitution mutations and bears evidence of exposure to ultraviolet light. CTVT is remarkably stable and lacks subclonal heterogeneity despite thousands of rearrangements, copy-number changes, and retrotransposon insertions. More than 10,000 genes carry nonsynonymous variants, and 646 genes have been lost. CTVT first arose in a dog with low genomic heterozygosity that may have lived about 11,000 years ago. The cancer spawned by this individual dispersed across continents about 500 years ago. Our results provide a genetic identikit of an ancient dog and demonstrate the robustness of mammalian somatic cells to survive for millennia despite a massive mutation burden. An unusual tumor in dogs arose more than 10,000 years ago, and despite a huge mutational burden, its genome has remained stable.[Also see Perspective by Parker and Ostrander] Breaking Tumor Dogma Canine transmissible venereal tumor (CTVT) is an unusual form of cancer because the infectious agent is not a virus or bacterium but the tumor cells themselves, which are passed from one dog to another during coitus. To explore the molecular features of the tumor and its possible origins, Murchison et al. (p. 437; see the Perspective by Parker and Ostrander) sequenced the genomes of two CTVTs and their host dogs, one from Australia and one from Brazil. Although CTVT has acquired a massive number of genomic alterations, including hundreds of times more somatic mutations than are normally found in human cancers, the tumor cell genome has remained diploid and stable. Indeed, CTVT may first have arisen in a dog that lived more than 10,000 years ago.
Retrovirology | 2009
Lyubov Zaitseva; Peter Cherepanov; Lada Leyens; Sam J. Wilson; Jane Rasaiyaah; Ariberto Fassati
BackgroundNuclear import of the HIV-1 reverse transcription complex (RTC) is critical for infection of non dividing cells, and importin 7 (imp7) has been implicated in this process. To further characterize the function of imp7 in HIV-1 replication we generated cell lines stably depleted for imp7 and used them in conjunction with infection, cellular fractionation and pull-down assays.ResultsImp7 depletion impaired HIV-1 infection but did not significantly affect HIV-2, simian immunodeficiency virus (SIVmac), or equine infectious anemia virus (EIAV). The lentiviral dependence on imp7 closely correlated with binding of the respective integrase proteins to imp7. HIV-1 RTC associated with nuclei of infected cells with remarkable speed and knock down of imp7 reduced HIV-1 DNA nuclear accumulation, delaying infection. Using an HIV-1 mutant deficient for reverse transcription, we found that viral RNA accumulated within nuclei of infected cells, indicating that reverse transcription is not absolutely required for nuclear import. Depletion of imp7 impacted on HIV-1 DNA but not RNA nuclear import and also inhibited DNA transfection efficiency.ConclusionAlthough imp7 may not be essential for HIV-1 infection, our results suggest that imp7 facilitates nuclear trafficking of DNA and that HIV-1 exploits imp7 to maximize nuclear import of its DNA genome. Lentiviruses other than HIV-1 may have evolved to use alternative nuclear import receptors to the same end.
Journal of Cell Biology | 2002
Jennifer E. Morgan; Jacqueline Gross; Charles N. Pagel; Jonathan R. Beauchamp; Ariberto Fassati; Adrian J. Thrasher; James P. Di Santo; Ivan Fisher; Xu Shiwen; David J. Abraham; Terence A. Partridge
Environmental influences have profound yet reversible effects on the behavior of resident cells. Earlier data have indicated that the amount of muscle formed from implanted myogenic cells is greatly augmented by prior irradiation (18 Gy) of the host mouse muscle. Here we confirm this phenomenon, showing that it varies between host mouse strains. However, it is unclear whether it is due to secretion of proliferative factors or reduction of antiproliferative agents. To investigate this further, we have exploited the observation that the immortal myogenic C2 C12 cell line forms tumors far more rapidly in irradiated than in nonirradiated host muscle. We show that the effect of preirradiation on tumor formation is persistent and dose dependent. However, C2 C12 cells are not irreversibly compelled to form undifferentiated tumor cells by the irradiated muscle environment and are still capable of forming large amounts of muscle when reimplanted into a nonirradiated muscle. In a clonal analysis of this effect, we discovered that C2 C12 cells have a bimodal propensity to form tumors; some clones form no tumors even after extensive periods in irradiated graft sites, whereas others rapidly form extensive tumors. This illustrates the subtle interplay between the phenotype of implanted cells and the factors in the muscle environment.
Retrovirology | 2006
Ariberto Fassati
Understanding how lentiviruses can infect terminally differentiated, non-dividing cells has proven a very complex and controversial problem. It is, however, a problem worth investigating, for it is central to HIV-1 transmission and AIDS pathogenesis. Here I shall attempt to summarise what is our current understanding for HIV-1 infection of non-dividing cells. In some cases I shall also attempt to make sense of controversies in the field and advance one or two modest proposals.
Virus Research | 2012
Ariberto Fassati
The early steps of HIV-1 infection starting after virus entry into cells up to integration of its genome into host chromosomes are poorly understood. From seminal work showing that HIV-1 and oncoretroviruses follow different steps in the early stages post-entry, significant advances have been made in recent years and an important role for the HIV-1 capsid (CA) protein, the constituent of the viral core, has emerged. CA appears to orchestrate several events, such as virus uncoating, recognition by restriction factors and the innate immune system. It also plays a role in nuclear import and integration of HIV-1 and has become a novel target for antiretroviral drugs. Here we describe the different functions of CA and how they may be integrated into one or more coherent models that illuminate the early events in HIV-1 infection and their relations with the host cell.