Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ariel Paulson is active.

Publication


Featured researches published by Ariel Paulson.


Nature | 2013

Maternal imprinting at the H19–Igf2 locus maintains adult haematopoietic stem cell quiescence

Aparna Venkatraman; Xi C. He; Joanne L. Thorvaldsen; Ryohichi Sugimura; John M. Perry; Fang Tao; Meng Zhao; Matthew K. Christenson; Rebeca Sanchez; Jaclyn Y. Yu; Lai Peng; Jeffrey S. Haug; Ariel Paulson; Hua Li; Xiao-bo Zhong; Thomas L. Clemens; Marisa S. Bartolomei; Linheng Li

The epigenetic regulation of imprinted genes by monoallelic DNA methylation of either maternal or paternal alleles is critical for embryonic growth and development. Imprinted genes were recently shown to be expressed in mammalian adult stem cells to support self-renewal of neural and lung stem cells; however, a role for imprinting per se in adult stem cells remains elusive. Here we show upregulation of growth-restricting imprinted genes, including in the H19–Igf2 locus, in long-term haematopoietic stem cells and their downregulation upon haematopoietic stem cell activation and proliferation. A differentially methylated region upstream of H19 (H19-DMR), serving as the imprinting control region, determines the reciprocal expression of H19 from the maternal allele and Igf2 from the paternal allele. In addition, H19 serves as a source of miR-675, which restricts Igf1r expression. We demonstrate that conditional deletion of the maternal but not the paternal H19-DMR reduces adult haematopoietic stem cell quiescence, a state required for long-term maintenance of haematopoietic stem cells, and compromises haematopoietic stem cell function. Maternal-specific H19-DMR deletion results in activation of the Igf2–Igfr1 pathway, as shown by the translocation of phosphorylated FoxO3 (an inactive form) from nucleus to cytoplasm and the release of FoxO3-mediated cell cycle arrest, thus leading to increased activation, proliferation and eventual exhaustion of haematopoietic stem cells. Mechanistically, maternal-specific H19-DMR deletion leads to Igf2 upregulation and increased translation of Igf1r, which is normally suppressed by H19-derived miR-675. Similarly, genetic inactivation of Igf1r partly rescues the H19-DMR deletion phenotype. Our work establishes a new role for this unique form of epigenetic control at the H19–Igf2 locus in maintaining adult stem cells.


The EMBO Journal | 2011

Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation

Chuanbing Bian; Chao Xu; Jianbin Ruan; Kenneth K. Lee; Tara L. Burke; Wolfram Tempel; Dalia Barsyte; Jing Li; Minhao Wu; Bo Zhou; Brian Fleharty; Ariel Paulson; Abdellah Allali-Hassani; Jin-Qiu Zhou; Georges Mer; Patrick A. Grant; Jerry L. Workman; Jianye Zang; Jinrong Min

The SAGA (Spt–Ada–Gcn5 acetyltransferase) complex is an important chromatin modifying complex that can both acetylate and deubiquitinate histones. Sgf29 is a novel component of the SAGA complex. Here, we report the crystal structures of the tandem Tudor domains of Saccharomyces cerevisiae and human Sgf29 and their complexes with H3K4me2 and H3K4me3 peptides, respectively, and show that Sgf29 selectively binds H3K4me2/3 marks. Our crystal structures reveal that Sgf29 harbours unique tandem Tudor domains in its C‐terminus. The tandem Tudor domains in Sgf29 tightly pack against each other face‐to‐face with each Tudor domain harbouring a negatively charged pocket accommodating the first residue alanine and methylated K4 residue of histone H3, respectively. The H3A1 and K4me3 binding pockets and the limited binding cleft length between these two binding pockets are the structural determinants in conferring the ability of Sgf29 to selectively recognize H3K4me2/3. Our in vitro and in vivo functional assays show that Sgf29 recognizes methylated H3K4 to recruit the SAGA complex to its targets sites and mediates histone H3 acetylation, underscoring the importance of Sgf29 in gene regulation.


Cell Stem Cell | 2008

N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells.

Jeffrey S. Haug; Xi C. He; Justin C. Grindley; Joshua P. Wunderlich; Karin Gaudenz; Jason T. Ross; Ariel Paulson; Kathryn P. Wagner; Yucai Xie; Ruihong Zhu; Tong Yin; John M. Perry; Mark J. Hembree; Erin P. Redenbaugh; Glenn L. Radice; Christopher Seidel; Linheng Li

Osteoblasts expressing the homophilic adhesion molecule N-cadherin form a hematopoietic stem cell (HSC) niche. Therefore, we examined how N-cadherin expression in HSCs relates to their function. We found that bone marrow (BM) cells highly expressing N-cadherin (N-cadherin(hi)) are not stem cells, being largely devoid of a Lineage(-)Sca1(+)cKit(+) population and unable to reconstitute hematopoietic lineages in irradiated recipient mice. Instead, long-term HSCs form distinct populations expressing N-cadherin at intermediate (N-cadherin(int)) or low (N-cadherin(lo)) levels. The minority N-cadherin(lo) population can robustly reconstitute the hematopoietic system, express genes that may prime them to mobilize, and predominate among HSCs mobilized from BM to spleen. The larger N-cadherin(int) population performs poorly in reconstitution assays when freshly isolated but improves in response to overnight in vitro culture. Their expression profile and lower cell-cycle entry rate suggest N-cadherin(int) cells are being held in reserve. Thus, differential N-cadherin expression reflects functional distinctions between two HSC subpopulations.


Molecular & Cellular Proteomics | 2010

Delayed Correlation of mRNA and Protein Expression in Rapamycin-treated Cells and a Role for Ggc1 in Cellular Sensitivity to Rapamycin

Marjorie Fournier; Ariel Paulson; Norman Pavelka; Amber L. Mosley; Karin Gaudenz; William D. Bradford; Earl Glynn; Hua Li; Mihaela E. Sardiu; Brian Fleharty; Christopher Seidel; Laurence Florens; Michael P. Washburn

To identify new molecular targets of rapamycin, an anticancer and immunosuppressive drug, we analyzed temporal changes in yeast over 6 h in response to rapamycin at the transcriptome and proteome levels and integrated the expression patterns with functional profiling. We show that the integration of transcriptomics, proteomics, and functional data sets provides novel insights into the molecular mechanisms of rapamycin action. We first observed a temporal delay in the correlation of mRNA and protein expression where mRNA expression at 1 and 2 h correlated best with protein expression changes after 6 h of rapamycin treatment. This was especially the case for the inhibition of ribosome biogenesis and induction of heat shock and autophagy essential to promote the cellular sensitivity to rapamycin. However, increased levels of vacuolar protease could enhance resistance to rapamycin. Of the 85 proteins identified as statistically significantly changing in abundance, most of the proteins that decreased in abundance were correlated with a decrease in mRNA expression. However, of the 56 proteins increasing in abundance, 26 were not correlated with an increase in mRNA expression. These protein changes were correlated with unchanged or down-regulated mRNA expression. These proteins, involved in mitochondrial genome maintenance, endocytosis, or drug export, represent new candidates effecting rapamycin action whose expression might be post-transcriptionally or post-translationally regulated. We identified GGC1, a mitochondrial GTP/GDP carrier, as a new component of the rapamycin/target of rapamycin (TOR) signaling pathway. We determined that the protein product of GGC1 was stabilized in the presence of rapamycin, and the deletion of the GGC1 enhanced growth fitness in the presence of rapamycin. A dynamic mRNA expression analysis of Δggc1 and wild-type cells treated with rapamycin revealed a key role for Ggc1p in the regulation of ribosome biogenesis and cell cycle progression under TOR control.


Nature Genetics | 2011

High conservation of transcription factor binding and evidence for combinatorial regulation across six Drosophila species

Qiye He; Anaïs F. Bardet; Brianne Patton; Jennifer Purvis; Jeff Johnston; Ariel Paulson; Madelaine Gogol; Alexander Stark; Julia Zeitlinger

The binding of some transcription factors has been shown to diverge substantially between closely related species. Here we show that the binding of the developmental transcription factor Twist is highly conserved across six Drosophila species, revealing strong functional constraints at its enhancers. Conserved binding correlates with sequence motifs for Twist and its partners, permitting the de novo discovery of their combinatorial binding. It also includes over 10,000 low-occupancy sites near the detection limit, which tend to mark enhancers of later developmental stages. These results suggest that developmental enhancers can be highly evolutionarily constrained, presumably because of their complex combinatorial nature.


Cell Reports | 2012

Poised RNA Polymerase II Changes over Developmental Time and Prepares Genes for Future Expression

Bjoern Gaertner; Jeff Johnston; Kai Chen; Nina Wallaschek; Ariel Paulson; Alexander S. Garruss; Karin Gaudenz; Bony De Kumar; Robb Krumlauf; Julia Zeitlinger

Poised RNA polymerase II (Pol II) is predominantly found at developmental control genes and is thought to allow their rapid and synchronous induction in response to extracellular signals. How the recruitment of poised RNA Pol II is regulated during development is not known. By isolating muscle tissue from Drosophila embryos at five stages of differentiation, we show that the recruitment of poised Pol II occurs at many genes de novo and this makes them permissive for future gene expression. A comparison with other tissues shows that these changes are stage specific and not tissue specific. In contrast, Polycomb group repression is tissue specific, and in combination with Pol II (the balanced state) marks genes with highly dynamic expression. This suggests that poised Pol II is temporally regulated and is held in check in a tissue-specific fashion. We compare our data with findings in mammalian embryonic stem cells and discuss a framework for predicting developmental programs on the basis of the chromatin state.


Cell Stem Cell | 2016

The Dlk1-Gtl2 Locus Preserves LT-HSC Function by Inhibiting the PI3K-mTOR Pathway to Restrict Mitochondrial Metabolism

Pengxu Qian; Xi C. He; Ariel Paulson; Zhenrui Li; Fang Tao; John M. Perry; Fengli Guo; Meng Zhao; Lei Zhi; Aparna Venkatraman; Jeffrey S. Haug; Tari Parmely; Hua Li; Rick T. Dobrowsky; Weng-Xing Ding; Tomohiro Kono; Anne C. Ferguson-Smith; Linheng Li

The mammalian imprinted Dlk1-Gtl2 locus produces multiple non-coding RNAs (ncRNAs) from the maternally inherited allele, including the largest miRNA cluster in the mammalian genome. This locus has characterized functions in some types of stem cell, but its role in hematopoietic stem cells (HSCs) is unknown. Here, we show that the Dlk1-Gtl2 locus plays a critical role in preserving long-term repopulating HSCs (LT-HSCs). Through transcriptome profiling in 17 hematopoietic cell types, we found that ncRNAs expressed from the Dlk1-Gtl2 locus are predominantly enriched in fetal liver HSCs and the adult LT-HSC population and sustain long-term HSC functionality. Mechanistically, the miRNA mega-cluster within the Dlk1-Gtl2 locus suppresses the entire PI3K-mTOR pathway. This regulation in turn inhibits mitochondrial biogenesis and metabolic activity and protects LT-HSCs from excessive reactive oxygen species (ROS) production. Our data therefore show that the imprinted Dlk1-Gtl2 locus preserves LT-HSC function by restricting mitochondrial metabolism.


G3: Genes, Genomes, Genetics | 2012

A Whole-Chromosome Analysis of Meiotic Recombination in Drosophila melanogaster

Danny E. Miller; Satomi Takeo; Kavyasree Nandanan; Ariel Paulson; Madelaine Gogol; Aaron C. Noll; Anoja Perera; Kendra N. Walton; William D. Gilliland; Hua Li; Karen Staehling; Justin P. Blumenstiel; R. Scott Hawley

Although traditional genetic assays have characterized the pattern of crossing over across the genome in Drosophila melanogaster, these assays could not precisely define the location of crossovers. Even less is known about the frequency and distribution of noncrossover gene conversion events. To assess the specific number and positions of both meiotic gene conversion and crossover events, we sequenced the genomes of male progeny from females heterozygous for 93,538 X chromosomal single-nucleotide and InDel polymorphisms. From the analysis of the 30 F1 hemizygous X chromosomes, we detected 15 crossover and 5 noncrossover gene conversion events. Taking into account the nonuniform distribution of polymorphism along the chromosome arm, we estimate that most oocytes experience 1 crossover event and 1.6 gene conversion events per X chromosome pair per meiosis. An extrapolation to the entire genome would predict approximately 5 crossover events and 8.6 conversion events per meiosis. Mean gene conversion tract lengths were estimated to be 476 base pairs, yielding a per nucleotide conversion rate of 0.86 × 10−5 per meiosis. Both of these values are consistent with estimates of conversion frequency and tract length obtained from studies of rosy, the only gene for which gene conversion has been studied extensively in Drosophila. Motif-enrichment analysis revealed a GTGGAAA motif that was enriched near crossovers but not near gene conversions. The low-complexity and frequent occurrence of this motif may in part explain why, in contrast to mammalian systems, no meiotic crossover hotspots have been found in Drosophila.


Genome Research | 2015

Analysis of dynamic changes in retinoid-induced transcription and epigenetic profiles of murine Hox clusters in ES cells

Bony De Kumar; Mark E. Parrish; Brian D. Slaughter; Jay R. Unruh; Madelaine Gogol; Christopher Seidel; Ariel Paulson; Hua Li; Karin Gaudenz; Allison Peak; William McDowell; Brian Fleharty; Youngwook Ahn; Chengqi Lin; Edwin R. Smith; Ali Shilatifard; Robb Krumlauf

The clustered Hox genes, which are highly conserved across metazoans, encode homeodomain-containing transcription factors that provide a blueprint for segmental identity along the body axis. Recent studies have underscored that in addition to encoding Hox genes, the homeotic clusters contain key noncoding RNA genes that play a central role in development. In this study, we have taken advantage of genome-wide approaches to provide a detailed analysis of retinoic acid (RA)-induced transcriptional and epigenetic changes within the homeotic clusters of mouse embryonic stem cells. Although there is a general colinear response, our analyses suggest a lack of strict colinearity for several genes in the HoxA and HoxB clusters. We have identified transcribed novel noncoding RNAs (ncRNAs) and their cis-regulatory elements that function in response to RA and demonstrated that the expression of these ncRNAs from both strands represent some of the most rapidly induced transcripts in ES cells. Finally, we have provided dynamic analyses of chromatin modifications for the coding and noncoding genes expressed upon activation and suggest that active transcription can occur in the presence of chromatin modifications and machineries associated with repressed transcription state over the clusters. Overall, our data provide a resource for a better understanding of the dynamic nature of the coding and noncoding transcripts and their associated chromatin marks in the regulation of homeotic gene transcription during development.


PLOS ONE | 2012

HP1a Targets the Drosophila KDM4A Demethylase to a Subset of Heterochromatic Genes to Regulate H3K36me3 Levels

Chia-Hui Lin; Ariel Paulson; Susan M. Abmayr; Jerry L. Workman

The KDM4 subfamily of JmjC domain-containing demethylases mediates demethylation of histone H3K36me3/me2 and H3K9me3/me2. Several studies have shown that human and yeast KDM4 proteins bind to specific gene promoters and regulate gene expression. However, the genome-wide distribution of KDM4 proteins and the mechanism of genomic-targeting remain elusive. We have previously identified Drosophila KDM4A (dKDM4A) as a histone H3K36me3 demethylase that directly interacts with HP1a. Here, we performed H3K36me3 ChIP-chip analysis in wild type and dkdm4a mutant embryos to identify genes regulated by dKDM4A demethylase activity in vivo. A subset of heterochromatic genes that show increased H3K36me3 levels in dkdm4a mutant embryos overlap with HP1a target genes. More importantly, binding to HP1a is required for dKDM4A-mediated H3K36me3 demethylation at a subset of heterochromatic genes. Collectively, these results show that HP1a functions to target the H3K36 demethylase dKDM4A to heterochromatic genes in Drosophila.

Collaboration


Dive into the Ariel Paulson's collaboration.

Top Co-Authors

Avatar

Hua Li

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Linheng Li

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Xi C. He

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Bony De Kumar

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Robb Krumlauf

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Christopher Seidel

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jeffrey S. Haug

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

John M. Perry

Stowers Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Karin Gaudenz

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Allison Peak

Stowers Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge