Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ariel Rodríguez is active.

Publication


Featured researches published by Ariel Rodríguez.


PLOS ONE | 2014

High levels of diversity uncovered in a widespread nominal taxon: continental phylogeography of the Neotropical tree frog Dendropsophus minutus

Marcelo Gehara; Andrew J. Crawford; Victor G. D. Orrico; Ariel Rodríguez; Stefan Lötters; Antoine Fouquet; Lucas Santiago Barrientos; Francisco Brusquetti; Ignacio De la Riva; Raffael Ernst; Giuseppe Gagliardi Urrutia; Frank Glaw; Juan M. Guayasamin; Monique Hölting; Martin Jansen; Philippe J. R. Kok; Axel Kwet; Rodrigo Lingnau; Mariana L. Lyra; Jiří Moravec; José P. Pombal; Fernando J. M. Rojas-Runjaic; Arne Schulze; J. Celsa Señaris; Mirco Solé; Miguel Trefaut Rodrigues; Evan Twomey; Célio F. B. Haddad; Miguel Vences; Jörn Köhler

Species distributed across vast continental areas and across major biomes provide unique model systems for studies of biotic diversification, yet also constitute daunting financial, logistic and political challenges for data collection across such regions. The tree frog Dendropsophus minutus (Anura: Hylidae) is a nominal species, continentally distributed in South America, that may represent a complex of multiple species, each with a more limited distribution. To understand the spatial pattern of molecular diversity throughout the range of this species complex, we obtained DNA sequence data from two mitochondrial genes, cytochrome oxidase I (COI) and the 16S rhibosomal gene (16S) for 407 samples of D. minutus and closely related species distributed across eleven countries, effectively comprising the entire range of the group. We performed phylogenetic and spatially explicit phylogeographic analyses to assess the genetic structure of lineages and infer ancestral areas. We found 43 statistically supported, deep mitochondrial lineages, several of which may represent currently unrecognized distinct species. One major clade, containing 25 divergent lineages, includes samples from the type locality of D. minutus. We defined that clade as the D. minutus complex. The remaining lineages together with the D. minutus complex constitute the D. minutus species group. Historical analyses support an Amazonian origin for the D. minutus species group with a subsequent dispersal to eastern Brazil where the D. minutus complex originated. According to our dataset, a total of eight mtDNA lineages have ranges >100,000 km2. One of them occupies an area of almost one million km2 encompassing multiple biomes. Our results, at a spatial scale and resolution unprecedented for a Neotropical vertebrate, confirm that widespread amphibian species occur in lowland South America, yet at the same time a large proportion of cryptic diversity still remains to be discovered.


Zootaxa | 2017

The use of bioacoustics in anuran taxonomy: theory, terminology, methods and recommendations for best practice

Jörn Köhler; Martin Jansen; Ariel Rodríguez; Philippe J. R. Kok; Luís Felipe Toledo; Mike Emmrich; Frank Glaw; Célio F. B. Haddad; Mark-Oliver Rödel; Miguel Vences

Vocalizations of anuran amphibians have received much attention in studies of behavioral ecology and physiology, but also provide informative characters for identifying and delimiting species. We here review the terminology and variation of frog calls from a perspective of integrative taxonomy, and provide hands-on protocols for recording, analyzing, comparing, interpreting and describing these sounds. Our focus is on advertisement calls, which serve as premating isolation mechanisms and, therefore, convey important taxonomic information. We provide recommendations for terminology of frog vocalizations, with call, note and pulse being the fundamental subunits to be used in descriptions and comparisons. However, due to the complexity and diversity of these signals, an unequivocal application of the terms call and note can be challenging. We therefore provide two coherent concepts that either follow a note-centered approach (defining uninterrupted units of sound as notes, and their entirety as call) or a call-centered approach (defining uninterrupted units as call whenever they are separated by long silent intervals) in terminology. Based on surveys of literature, we show that numerous call traits can be highly variable within and between individuals of one species. Despite idiosyncrasies of species and higher taxa, the duration of calls or notes, pulse rate within notes, and number of pulses per note appear to be more static within individuals and somewhat less affected by temperature. Therefore, these variables might often be preferable as taxonomic characters over call rate or note rate, which are heavily influenced by various factors. Dominant frequency is also comparatively static and only weakly affected by temperature, but depends strongly on body size. As with other taxonomic characters, strong call divergence is typically indicative of species-level differences, whereas call similarities of two populations are no evidence for them being conspecific. Taxonomic conclusions can especially be drawn when the general advertisement call structure of two candidate species is radically different and qualitative call differences are thus observed. On the other hand, quantitative differences in call traits might substantially vary within and among conspecific populations, and require careful evaluation and analysis. We provide guidelines for the taxonomic interpretation of advertisement call differences in sympatric and allopatric situations, and emphasize the need for an integrative use of multiple datasets (bio-acoustics, morphology, genetics), particularly for allopatric scenarios. We show that small-sized frogs often emit calls with frequency components in the ultrasound spectrum, although it is unlikely that these high frequencies are of biological relevance for the majority of them, and we illustrate that detection of upper harmonics depends also on recording distance because higher frequencies are attenuated more strongly. Bioacoustics remains a prime approach in integrative taxonomy of anurans if uncertainty due to possible intraspecific variation and technical artifacts is adequately considered and acknowledged.


Molecular Phylogenetics and Evolution | 2014

Nuclear and mitochondrial multilocus phylogeny and survey of alkaloid content in true salamanders of the genus Salamandra (Salamandridae)

Miguel Vences; Eugenia Sanchez; J. Susanne Hauswaldt; Daniel Eikelmann; Ariel Rodríguez; Salvador Carranza; David Donaire; Marcelo Gehara; Véronique Helfer; Stefan Lötters; Philine Werner; Stefan Schulz; Sebastian Steinfartz

The genus Salamandra represents a clade of six species of Palearctic salamanders of either contrasted black-yellow, or uniformly black coloration, known to contain steroidal alkaloid toxins in high concentrations in their skin secretions. This study reconstructs the phylogeny of the genus Salamandra based on DNA sequences of segments of 10 mitochondrial and 13 nuclear genes from 31 individual samples representing all Salamandra species and most of the commonly recognized subspecies. The concatenated analysis of the complete dataset produced a fully resolved tree with most nodes strongly supported, suggesting that a clade composed of the Alpine salamander (S. atra) and the Corsican fire salamander (S. corsica) is the sister taxon to a clade containing the remaining species, among which S. algira and S. salamandra are sister species. Separate analyses of mitochondrial and nuclear data partitions disagreed regarding basal nodes and in the position of the root but concordantly recovered the S. atra/S. corsica as well as the S. salamandra/S. algira relationship. A species-tree analysis suggested almost simultaneous temporal splits between these pairs of species, which we hypothesize was caused by vicariance events after the Messinian salinity crisis (from late Miocene to early Pliocene). A survey of toxins with combined gas chromatography/mass spectroscopy confirmed the presence of samandarine and/or samandarone steroidal alkaloids in all species of Salamandra as well as in representatives of their sister group, Lyciasalamandra. Samandarone was also detected in lower concentrations in other salamandrids including Calotriton, Euproctus, Lissotriton, and Triturus, suggesting that the presence and possible biosynthesis of this alkaloid is plesiomorphic within the Salamandridae.


Biology Letters | 2011

Discovery of skin alkaloids in a miniaturized eleutherodactylid frog from Cuba

Ariel Rodríguez; Dennis Poth; Stefan Schulz; Miguel Vences

Four phylogenetically independent lineages of frogs are currently known to sequester lipid-soluble skin alkaloids for which a dietary source has been demonstrated. We report here a remarkable fifth such instance, in Eleutherodactylus iberia and Eleutherodactylus orientalis, two species of miniaturized frogs of the family Eleutherodactylidae from Cuba. Six pumiliotoxins and two indolizidines were found in E. iberia, one of the smallest frogs in the world and characterized by a contrasting colour pattern for which we hypothesize an aposematic function. Analyses of stomach content indicated a numerical prevalence of mites with an important proportion of oribatids—a group of arthropods known to contain one of the pumiliotoxins detected in E. iberia. This suggests that miniaturization and specialization to small prey may have favoured the acquisition of dietary skin alkaloids in these amphibians.


Molecular Phylogenetics and Evolution | 2010

Biogeographic origin and radiation of Cuban Eleutherodactylus frogs of the auriculatus species group, inferred from mitochondrial and nuclear gene sequences.

Ariel Rodríguez; Miguel Vences; Bruno Nevado; Annie Machordom; Erik Verheyen

We studied phylogenetic relationships of the Eleutherodactylus auriculatus species group to infer colonization and diversification patterns in this endemic radiation of terrestrial frogs of the genus Eleutherodactylus in the largest of the Greater Antilles, Cuba. An initial screening of genetic diversity based on partial sequences of the 16S rRNA gene in almost 100 individuals of all species of the group and covering the complete known geographic range of their occurrence found most species endemic to small ranges in the eastern Cuban mountains while a single species was widespread over most of Cuba. Our molecular phylogeny, based on 3731 bp of four mitochondrial and one nuclear gene, suggests that most cladogenetic events within the group occurred among clades restricted to the eastern mountains, which acted as refugia and facilitated the diversification in this group. Our results reveal two separate colonization events of Central and Western Cuba and allow inferring the timing of the subsequent diversification events that occurred between 11 and 2 Mya. Because populations previously assigned to E. auriculatus represent four genetically strongly divergent lineages that also differ in their advertisement calls, we propose that E. auriculatus as currently recognized comprises four species. The difficulties in assigning the name auriculatus to any of these four species, and the fact that E. principalis is nested within one of them, stress the need for a thorough taxonomic revision of this group.


Proceedings of the Royal Society B: Biological Sciences | 2015

Hybridization masks speciation in the evolutionary history of the Galápagos marine iguana

Amy MacLeod; Ariel Rodríguez; Miguel Vences; Pablo Orozco-terWengel; Carolina García; Fritz Trillmich; Gabriele Gentile; Adalgisa Caccone; Galo Quezada; Sebastian Steinfartz

The effects of the direct interaction between hybridization and speciation—two major contrasting evolutionary processes—are poorly understood. We present here the evolutionary history of the Galápagos marine iguana (Amblyrhynchus cristatus) and reveal a case of incipient within-island speciation, which is paralleled by between-island hybridization. In-depth genome-wide analyses suggest that Amblyrhynchus diverged from its sister group, the Galápagos land iguanas, around 4.5 million years ago (Ma), but divergence among extant populations is exceedingly young (less than 50 000 years). Despite Amblyrhynchus appearing as a single long-branch species phylogenetically, we find strong population structure between islands, and one case of incipient speciation of sister lineages within the same island—ostensibly initiated by volcanic events. Hybridization between both lineages is exceedingly rare, yet frequent hybridization with migrants from nearby islands is evident. The contemporary snapshot provided by highly variable markers indicates that speciation events may have occurred throughout the evolutionary history of marine iguanas, though these events are not visible in the deeper phylogenetic trees. We hypothesize that the observed interplay of speciation and hybridization might be a mechanism by which local adaptations, generated by incipient speciation, can be absorbed into a common gene pool, thereby enhancing the evolutionary potential of the species as a whole.


Evolutionary Ecology | 2015

Genetic divergence in tropical anurans: deeper phylogeographic structure in forest specialists and in topographically complex regions

Ariel Rodríguez; Miriam Börner; Maciej Pabijan; Marcelo Gehara; Célio F. B. Haddad; Miguel Vences

Many tropical organisms show large genetic differences among populations, yet the prevalent drivers of the underlying divergence processes are incompletely understood. We explored the effect of several habitat and natural history features (body size, macrohabitat, microhabitat, reproduction site, climatic heterogeneity, and topography) on population genetic divergence in tropical amphibians, based on a data set of 2680 DNA sequences of the mitochondrial cytochrome b gene in 39 widely distributed frog species from Brazil, Central America, Cuba, and Madagascar. Generalized linear models were implemented in an information-theoretic framework to evaluate the effects of the six predictors on genetic divergence among populations, measured as spatially corrected pairwise distances. Results indicate that topographic complexity and macrohabitat preferences have a strong effect on population divergence with species specialized to forest habitat and/or from topographically complex regions showing higher phylogeographic structure. This relationship changed after accounting for phylogenetic relatedness among taxa rendering macrohabitat preferences as the most important feature shaping genetic divergence. The remaining predictors showed negligible effects on the observed genetic divergence. A similar analysis performed using the population-scaled mutation rate (Θ) as response variable showed little effect of the predictors. Our results demonstrate greater evolutionary independence among populations of anurans from forested regions versus species from open habitats. This pattern may result from lower vagility and stringency in reproductive requirements of rainforest species. Conversely, open landscapes may offer ephemeral and unstable breeding sites suitable for vagile generalist species, resulting in reduced intraspecific divergence. Our results predict that, for a given period of time, there should be a higher chance of speciation in tropical anurans living in forests than in species adapted to open habitats.


Molecular Phylogenetics and Evolution | 2017

Inferring the shallow phylogeny of true salamanders (Salamandra) by multiple phylogenomic approaches

Ariel Rodríguez; James D. Burgon; Mariana L. Lyra; Iker Irisarri; Denis Baurain; Leon Blaustein; Bayram Göçmen; Sven Künzel; Barbara K. Mable; Arne W. Nolte; Michael Veith; Sebastian Steinfartz; Kathryn R. Elmer; Hervé Philippe; Miguel Vences

The rise of high-throughput sequencing techniques provides the unprecedented opportunity to analyse controversial phylogenetic relationships in great depth, but also introduces a risk of being misinterpreted by high node support values influenced by unevenly distributed missing data or unrealistic model assumptions. Here, we use three largely independent phylogenomic data sets to reconstruct the controversial phylogeny of true salamanders of the genus Salamandra, a group of amphibians providing an intriguing model to study the evolution of aposematism and viviparity. For all six species of the genus Salamandra, and two outgroup species from its sister genus Lyciasalamandra, we used RNA sequencing (RNAseq) and restriction site associated DNA sequencing (RADseq) to obtain data for: (1) 3070 nuclear protein-coding genes from RNAseq; (2) 7440 loci obtained by RADseq; and (3) full mitochondrial genomes. The RNAseq and RADseq data sets retrieved fully congruent topologies when each of them was analyzed in a concatenation approach, with high support for: (1) S. infraimmaculata being sister group to all other Salamandra species; (2) S. algira being sister to S. salamandra; (3) these two species being the sister group to a clade containing S. atra, S. corsica and S. lanzai; and (4) the alpine species S. atra and S. lanzai being sister taxa. The phylogeny inferred from the mitochondrial genome sequences differed from these results, most notably by strongly supporting a clade containing S. atra and S. corsica as sister taxa. A different placement of S. corsica was also retrieved when analysing the RNAseq and RADseq data under species tree approaches. Closer examination of gene trees derived from RNAseq revealed that only a low number of them supported each of the alternative placements of S. atra. Furthermore, gene jackknife support for the S. atra - S. lanzai node stabilized only with very large concatenated data sets. The phylogeny of true salamanders thus provides a compelling example of how classical node support metrics such as bootstrap and Bayesian posterior probability can provide high confidence values in a phylogenomic topology even if the phylogenetic signal for some nodes is spurious, highlighting the importance of complementary approaches such as gene jackknifing. Yet, the general congruence among the topologies recovered from the RNAseq and RADseq data sets increases our confidence in the results, and validates the use of phylotranscriptomic approaches for reconstructing shallow relationships among closely related taxa. We hypothesize that the evolution of Salamandra has been characterized by episodes of introgressive hybridization, which would explain the difficulties of fully reconstructing their evolutionary relationships.


Amphibia-reptilia | 2015

Flatworms ( Schmidtea nova) prey upon embryos of the common frog ( Rana temporaria) and induce minor developmental acceleration

Ori Segev; Ariel Rodríguez; Susanne Hauswaldt; Miguel Vences

Amphibians vary in the degree of pre-metamorphic developmental plasticity in response to risk of predation. Changes in hatching time and development rate can increase egg or tadpole survival respectively by shortening the duration of the more vulnerable stages. The intensity of predator induced developmental response and its direction, i.e. delayed, accelerated, or none, varies considerably between amphibian and predator species. We surveyed freshly deposited clutches of the European common frog Rana temporariain a population in Braunschweig, Germany and found that 62% (N = 20) of the clutches contained planarians ( Schmidtea nova), with an average of 3.94 ± 0.79 and a maximum of 13 planarians per clutch. A laboratory predation experiment confirmed that this planaria preys on R. temporariaeggs and early embryos. We further exposed freshly laid egg masses to either free, caged, or no planarians treatments using floating containers within a breeding pond where the two species co-occur. After 10 days exposure, embryos showed developmental stages 14-25 along the Gosner scale with statistically significant positive effects of both predator treatments. The observed effect was rather slight as predator-exposed individuals showed an increase by a single Gosner stage relative to those raised without planarians. The detected trend suggests that direct and indirect cues from flatworms, rarely considered as anuran predators, might induce a developmental response in R. temporariaearly developmental stages.


Nature Communications | 2017

Transcriptomic and macroevolutionary evidence for phenotypic uncoupling between frog life history phases

Katharina C. Wollenberg Valero; Joan Garcia-Porta; Ariel Rodríguez; Mónica Arias; Abhijeet Shah; Roger Daniel Randrianiaina; Jason L. Brown; Frank Glaw; Fèlix Amat; Sven Künzel; Dirk Metzler; Raphael D. Isokpehi; Miguel Vences

Anuran amphibians undergo major morphological transitions during development, but the contribution of their markedly different life-history phases to macroevolution has rarely been analysed. Here we generate testable predictions for coupling versus uncoupling of phenotypic evolution of tadpole and adult life-history phases, and for the underlying expression of genes related to morphological feature formation. We test these predictions by combining evidence from gene expression in two distantly related frogs, Xenopus laevis and Mantidactylus betsileanus, with patterns of morphological evolution in the entire radiation of Madagascan mantellid frogs. Genes linked to morphological structure formation are expressed in a highly phase-specific pattern, suggesting uncoupling of phenotypic evolution across life-history phases. This gene expression pattern agrees with uncoupled rates of trait evolution among life-history phases in the mantellids, which we show to have undergone an adaptive radiation. Our results validate a prevalence of uncoupling in the evolution of tadpole and adult phenotypes of frogs.

Collaboration


Dive into the Ariel Rodríguez's collaboration.

Top Co-Authors

Avatar

Miguel Vences

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marcelo Gehara

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Sebastian Steinfartz

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Stefan Schulz

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Dennis Poth

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar

Frank Glaw

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy MacLeod

Braunschweig University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge