Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ariel Sommer is active.

Publication


Featured researches published by Ariel Sommer.


Physical Review Letters | 2012

Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas

Lawrence W. Cheuk; Ariel Sommer; Zoran Hadzibabic; Tarik Yefsah; Waseem Bakr; Martin Zwierlein

The coupling of the spin of electrons to their motional state lies at the heart of recently discovered topological phases of matter. Here we create and detect spin-orbit coupling in an atomic Fermi gas, a highly controllable form of quantum degenerate matter. We directly reveal the spin-orbit gap via spin-injection spectroscopy, which characterizes the energy-momentum dispersion and spin composition of the quantum states. For energies within the spin-orbit gap, the system acts as a spin diode. We also create a spin-orbit coupled lattice and probe its spinful band structure, which features additional spin gaps and a fully gapped spectrum. In the presence of s-wave interactions, such systems should display induced p-wave pairing, topological superfluidity, and Majorana edge states.


Nature | 2011

Universal spin transport in a strongly interacting Fermi gas

Ariel Sommer; Mark Ku; Giacomo Roati; Martin Zwierlein

Transport of fermions, particles with half-integer spin, is central to many fields of physics. Electron transport runs modern technology, defining states of matter such as superconductors and insulators, and electron spin is being explored as a new carrier of information. Neutrino transport energizes supernova explosions following the collapse of a dying star, and hydrodynamic transport of the quark–gluon plasma governed the expansion of the early Universe. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics. Even above the superfluid transition, such gases flow as an almost perfect fluid with very low viscosity when interactions are tuned to a scattering resonance. In this hydrodynamic regime, collective density excitations are weakly damped. Here we experimentally investigate spin excitations in a Fermi gas of 6Li atoms, finding that, in contrast, they are maximally damped. A spin current is induced by spatially separating two spin components and observing their evolution in an external trapping potential. We demonstrate that interactions can be strong enough to reverse spin currents, with components of opposite spin reflecting off each other. Near equilibrium, we obtain the spin drag coefficient, the spin diffusivity and the spin susceptibility as a function of temperature on resonance and show that they obey universal laws at high temperatures. In the degenerate regime, the spin diffusivity approaches a value set by [planck]/m, the quantum limit of diffusion, where [planck]/m is Planck’s constant divided by 2π and m the atomic mass. For repulsive interactions, our measurements seem to exclude a metastable ferromagnetic state.


Physical Review Letters | 2012

Evolution of Fermion Pairing from Three to Two Dimensions

Ariel Sommer; Lawrence W. Cheuk; Mark Ku; Waseem Bakr; Martin Zwierlein

We follow the evolution of fermion pairing in the dimensional crossover from three-dimensional to two-dimensional as a strongly interacting Fermi gas of ^{6}Li atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to the opening of a gap in radio-frequency spectra, even on the Bardeen-Cooper-Schrieffer side of a Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical two-body binding energy and, in the two-dimensional limit, the zero-temperature mean-field Bose-Einstein-condensation to Bardeen-Cooper-Schrieffer crossover theory.


Nature | 2016

Synthetic Landau levels for photons

Nathan Schine; Albert Ryou; Andrey Gromov; Ariel Sommer; Jonathan Simon

Synthetic photonic materials are an emerging platform for exploring the interface between microscopic quantum dynamics and macroscopic material properties. Photons experiencing a Lorentz force develop handedness, providing opportunities to study quantum Hall physics and topological quantum science. Here we present an experimental realization of a magnetic field for continuum photons. We trap optical photons in a multimode ring resonator to make a two-dimensional gas of massive bosons, and then employ a non-planar geometry to induce an image rotation on each round-trip. This results in photonic Coriolis/Lorentz and centrifugal forces and so realizes the Fock–Darwin Hamiltonian for photons in a magnetic field and harmonic trap. Using spatial- and energy-resolved spectroscopy, we track the resulting photonic eigenstates as radial trapping is reduced, finally observing a photonic Landau level at degeneracy. To circumvent the challenge of trap instability at the centrifugal limit, we constrain the photons to move on a cone. Spectroscopic probes demonstrate flat space (zero curvature) away from the cone tip. At the cone tip, we observe that spatial curvature increases the local density of states, and we measure fractional state number excess consistent with the Wen–Zee theory, providing an experimental test of this theory of electrons in both a magnetic field and curved space. This work opens the door to exploration of the interplay of geometry and topology, and in conjunction with Rydberg electromagnetically induced transparency, enables studies of photonic fractional quantum Hall fluids and direct detection of anyons.


Nature | 2013

Heavy Solitons in a Fermionic Superfluid

Tarik Yefsah; Ariel Sommer; Mark Ku; Lawrence W. Cheuk; Wenjie Ji; Waseem Bakr; Martin Zwierlein

Solitons—solitary waves that maintain their shape as they propagate—occur as water waves in narrow canals, as light pulses in optical fibres and as quantum mechanical matter waves in superfluids and superconductors. Their highly nonlinear and localized nature makes them very sensitive probes of the medium in which they propagate. Here we create long-lived solitons in a strongly interacting superfluid of fermionic atoms and directly observe their motion. As the interactions are tuned from the regime of Bose–Einstein condensation of tightly bound molecules towards the Bardeen–Cooper–Schrieffer limit of long-range Cooper pairs, the solitons’ effective mass increases markedly, to more than 200 times their bare mass, signalling strong quantum fluctuations. This mass enhancement is more than 50 times larger than the theoretically predicted value. Our work provides a benchmark for theories of non-equilibrium dynamics of strongly interacting fermions.


Physical Review A | 2016

Observation of Cavity Rydberg Polaritons

Jia Ningyuan; Alexandros Georgakopoulos; Albert Ryou; Nathan Schine; Ariel Sommer; Jonathan Z. Simon

We demonstrate hybridization of optical cavity photons with atomic Rydberg excitations using electromagnetically induced transparency (EIT). The resulting dark state Rydberg polaritons exhibit a compressed frequency spectrum and enhanced lifetime indicating strong light-matter mixing. We study the coherence properties of cavity Rydberg polaritons and identify the generalized EIT linewidth for optical cavities. Strong collective coupling suppresses polariton losses due to inhomogeneous broadening, which we demonstrate by using different Rydberg levels with a range of polarizabilities. Our results point the way towards using cavity Rydberg polaritons as a platform for creating photonic quantum materials.


New Journal of Physics | 2011

Spin transport in polaronic and superfluid Fermi gases

Ariel Sommer; Mark Jen-Hao Ku; Martin Zwierlein

We present measurements of spin transport in ultracold gases of fermionic lithium-6 in a mixture of two spin states at a Feshbach resonance. In particular, we study the spin dipole mode, where the two spin components are displaced from each other against a harmonic restoring force. We prepare a highly-imbalanced, or polaronic, spin mixture with a spin dipole excitation and observe strong, unitarity limited damping of the spin dipole mode. In gases with small spin imbalance, below the Pauli limit for superfluidity, we observe strongly damped spin flow despite the presence of a superfluid core.


New Journal of Physics | 2016

Engineering photonic Floquet Hamiltonians through Fabry–Pérot resonators

Ariel Sommer; Jonathan Simon

In this paper we analyze an optical Fabry–Perot resonator as a time-periodic driving of the (2D) optical field repeatedly traversing the resonator, uncovering that resonator twist produces a synthetic magnetic field applied to the light within the resonator, while mirror aberrations produce relativistic dynamics, anharmonic trapping and spacetime curvature. We develop a Floquet formalism to compute the effective Hamiltonian for the 2D field, generalizing the idea that the intra-cavity optical field corresponds to an ensemble of non-interacting, massive, harmonically trapped particles. This work illuminates the extraordinary potential of optical resonators for exploring the physics of quantum fluids in gauge fields and exotic space–times.


Nature Physics | 2018

A strongly interacting polaritonic quantum dot

Ningyuan Jia; Nathan Schine; Alexandros Georgakopoulos; Albert Ryou; Logan W. Clark; Ariel Sommer; Jonathan Simon

Polaritons are promising constituents of both synthetic quantum matter1 and quantum information processors2, whose properties emerge from their components: from light, polaritons draw fast dynamics and ease of transport; from matter, they inherit the ability to collide with one another. Cavity polaritons are particularly promising as they may be confined and subjected to synthetic magnetic fields controlled by cavity geometry3, and furthermore they benefit from increased robustness due to the cavity enhancement in light–matter coupling. Nonetheless, until now, cavity polaritons have operated only in a weakly interacting mean-field regime4,5. Here we demonstrate strong interactions between individual cavity polaritons enabled by employing highly excited Rydberg atoms as the matter component of the polaritons. We assemble a quantum dot composed of approximately 150 strongly interacting Rydberg-dressed 87Rb atoms in a cavity, and observe blockaded transport of photons through it. We further observe coherent photon tunnelling oscillations, demonstrating that the dot is zero-dimensional. This work establishes the cavity Rydberg polariton as a candidate qubit in a photonic information processor and, by employing multiple resonator modes as the spatial degrees of freedom of a photonic particle, the primary ingredient to form photonic quantum matter6.Cavity polaritons whose matter component is composed of highly excited Rydberg atoms are shown to act as a zero-dimensional quantum dot. Trapping 150 polaritons led to the observation of blockaded photon transport.


Physical Review A | 2018

Photons and polaritons in a broken-time-reversal nonplanar resonator

Ningyuan Jia; Nathan Schine; Alexandros Georgakopoulos; Albert Ryou; Ariel Sommer; Jonathan Simon

The combination of twisted resonators with Rydberg polaritons is experimentally explored to simultaneously break inversion and time-reversal symmetries. Besides showing how to design a low-loss optical isolator, the work provides tools for the exploration of topological many-body physics from light.

Collaboration


Dive into the Ariel Sommer's collaboration.

Top Co-Authors

Avatar

Martin Zwierlein

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark Ku

University of Florence

View shared research outputs
Top Co-Authors

Avatar

Albert Ryou

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tarik Yefsah

École Normale Supérieure

View shared research outputs
Researchain Logo
Decentralizing Knowledge