Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ariel Stock is active.

Publication


Featured researches published by Ariel Stock.


Journal of Autoimmunity | 2013

NEUROPSYCHIATRIC DISEASE IN MURINE LUPUS IS DEPENDENT ON THE TWEAK/Fn14 PATHWAY

Jing Wen; Yumin Xia; Ariel Stock; Jennifer S. Michaelson; Linda C. Burkly; Maria Gulinello; Chaim Putterman

Given the early onset of neuropsychiatric disease and the potential response to immunosuppressive therapy, neuropsychiatric disease is considered a primary disease manifestation in systemic lupus erythematosus (SLE). However, the pathogenesis is not fully understood and optimal treatment has yet to be determined. TWEAK is a TNF family ligand that mediates pleotropic effects through its receptor Fn14, including the stimulation of inflammatory cytokine production by astrocytes, endothelial cells, and other non-hematopeotic cell types, and induction of neuronal death. Furthermore, TWEAK-inducible mediators are implicated in neuropsychiatric lupus. Thus, we hypothesized that the TWEAK/Fn14 pathway may be involved in the pathogenesis of neuropsychiatric SLE. We generated MRL-lpr/lpr (MRL/lpr) mice deficient for Fn14, the sole known signaling receptor for TWEAK. Neuropsychiatric disease was compared in age- and gender-matched MRL/lpr Fn14 wild type (WT) and knockout (KO) mice, using a comprehensive battery of neurobehavioral tests. We found that MRL/lpr Fn14WT mice displayed profound depression-like behavior as seen by increased immobility in a forced swim test and loss of preference for sweetened fluids, which were significantly ameliorated in Fn14KO mice. Similarly, MRL/lpr Fn14WT mice had impaired cognition, and this was significantly improved in Fn14KO mice. To determine the mechanism by which Fn14 deficiency ameliorates neuropsychiatric disease, we assessed the serum levels of autoantibodies and local expression of cytokines in the cortex and hippocampus of lupus mice. No significant differences were found in the serum levels of antibodies to nuclear antigens, or autoantibodies specifically associated with neuropsychiatric disease, between MRL/lpr Fn14WT and KO mice. However, MRL/lpr Fn14KO mice had significantly decreased brain expression of RANTES, C3, and other proinflammatory mediators. Furthermore, MRL/lpr Fn14KO mice displayed improved blood brain barrier integrity. In conclusion, several central manifestations of neuropsychiatric lupus, including depression-like behavior and altered cognition, are normalized in MRL/lpr mice lacking Fn14. Our results are the first to indicate a role for the TWEAK/Fn14 pathway in the pathogenesis of neuropsychiatric lupus, and suggest this ligand-receptor pair as a potential therapeutic target for a common and dangerous disease manifestation.


Journal of Autoimmunity | 2015

TNF-like weak inducer of apoptosis promotes blood brain barrier disruption and increases neuronal cell death in MRL/lpr mice

Jing Wen; Jessica Doerner; Karen M. Weidenheim; Yumin Xia; Ariel Stock; Jennifer S. Michaelson; Kuti Baruch; Aleksandra Deczkowska; Maria Gulinello; Michal Schwartz; Linda C. Burkly; Chaim Putterman

Neuropsychiatric disease is one of the most common manifestations of human systemic lupus erythematosus, but the mechanisms remain poorly understood. In human brain microvascular endothelial cells in vitro, TNF-like weak inducer of apoptosis (TWEAK) decreases tight junction ZO-1 expression and increases the permeability of monolayer cell cultures. Furthermore, knockout (KO) of the TWEAK receptor, Fn14, in the MRL/lpr lupus mouse strain markedly attenuates neuropsychiatric disease, as demonstrated by significant reductions in depressive-like behavior and improved cognitive function. The purpose of the present study was to determine the mechanisms by which TWEAK signaling is instrumental in the pathogenesis of neuropsychiatric lupus (NPSLE). Evaluating brain sections of MRL/lpr Fn14WT and Fn14KO mice, we found that Fn14KO mice displayed significantly decreased cellular infiltrates in the choroid plexus. To evaluate the integrity of the blood brain barrier (BBB) in MRL/lpr mice, Western blot for fibronectin, qPCR for iNOS, and immunohistochemical staining for VCAM-1/ICAM-1 were performed. We found preserved BBB permeability in MRL/lpr Fn14KO mice, attributable to reduced brain expression of VCAM-1/ICAM-1 and iNOS. Additionally, administration of Fc-TWEAK intravenously directly increased the leakage of a tracer (dextran-FITC) into brain tissue. Furthermore, MRL/lpr Fn14KO mice displayed reduced antibody (IgG) and complement (C3, C6, and C4a) deposition in the brain. Finally, we found that MRL/lpr Fn14KO mice manifested reduced neuron degeneration and hippocampal gliosis. Our studies indicate that TWEAK/Fn14 interactions play an important role in the pathogenesis of NPSLE by increasing the accumulation of inflammatory cells in the choroid plexus, disrupting BBB integrity, and increasing neuronal damage, suggesting a novel target for therapy in this disease.


Journal of Neuroinflammation | 2016

B cell and/or autoantibody deficiency do not prevent neuropsychiatric disease in murine systemic lupus erythematosus

Jing Wen; Jessica Doerner; Samantha A. Chalmers; Ariel Stock; Haowei Wang; Maria Gullinello; Mark J. Shlomchik; Chaim Putterman

BackgroundNeuropsychiatric lupus (NPSLE) can be one of the earliest clinical manifestations in human lupus. However, its mechanisms are not fully understood. In lupus, a compromised blood-brain barrier may allow for the passage of circulating autoantibodies into the brain, where they can induce neuropsychiatric abnormalities including depression-like behavior and cognitive abnormalities. The purpose of this study was to determine the role of B cells and/or autoantibodies in the pathogenesis of murine NPSLE.MethodsWe evaluated neuropsychiatric manifestations, brain pathology, and cytokine expression in constitutively (JhD/MRL/lpr) and conditionally (hCD20-DTA/MRL/lpr, inducible by tamoxifen) B cell-depleted mice as compared to MRL/lpr lupus mice.ResultsWe found that autoantibody levels were negligible (JhD/MRL/lpr) or significantly reduced (hCD20-DTA/MRL/lpr) in the serum and cerebrospinal fluid, respectively. Nevertheless, both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice showed profound depression-like behavior, which was no different from MRL/lpr mice. Cognitive deficits were also observed in both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice, similar to those exhibited by MRL/lpr mice. Furthermore, although some differences were dependent on the timing of depletion, central features of NPSLE in the MRL/lpr strain including increased blood-brain barrier permeability, brain cell apoptosis, and upregulated cytokine expression persisted in B cell-deficient and B cell-depleted mice.ConclusionsOur study surprisingly found that B cells and/or autoantibodies are not required for key features of neuropsychiatric disease in murine NPSLE.


Brain Behavior and Immunity | 2016

Intracerebroventricular administration of TNF-like weak inducer of apoptosis induces depression-like behavior and cognitive dysfunction in non-autoimmune mice.

Jing Wen; Christopher H. Chen; Ariel Stock; Jessica Doerner; Maria Gulinello; Chaim Putterman

Fn14, the sole known signaling receptor for the TNF family member TWEAK, is inducibly expressed in the central nervous system (CNS) in endothelial cells, astrocytes, microglia, and neurons. There is increasing recognition of the importance of the TWEAK/Fn14 pathway in autoimmune neurologic conditions, including experimental autoimmune encephalomyelitis and neuropsychiatric lupus. Previously, we had found that Fn14 knockout lupus-prone MRL/lpr mice display significantly attenuated neuropsychiatric manifestations. To investigate whether this improvement in disease is secondary to inhibition of TWEAK/Fn14 signaling within the CNS or the periphery, and determine whether TWEAK-mediated neuropsychiatric effects are strain dependent, we performed intracerebroventricular (ICV) injection of Fc-TWEAK or an isotype matched control protein to C57Bl6/J non-autoimmune mice. We found that Fc-TWEAK injected C57Bl6/J mice developed significant depression-like behavior and cognitive dysfunction. Inflammatory mediators associated with lupus brain disease, including CCL2, C3, and iNOS, were significantly elevated in the brains of Fc-TWEAK treated mice. Furthermore, Fc-TWEAK directly increased blood brain barrier (BBB) permeability, as demonstrated by increased IgG deposition in the brain and reduced aquaporin-4 expression. Finally, Fc-TWEAK increased apoptotic cell death in the cortex and hippocampus. In conclusion, TWEAK can contribute to lupus-associated neurobehavioral deficits including depression and cognitive dysfunction by acting within the CNS to enhance production of inflammatory mediators, promote disruption of the BBB, and induce apoptosis in resident brain cells. Our study provides further support that the TWEAK/Fn14 signaling pathway may be a potential therapeutic target for inflammatory diseases involving the CNS.


Autoimmunity Reviews | 2016

The role of B cells and autoantibodies in neuropsychiatric lupus.

Jing Wen; Ariel Stock; Samantha A. Chalmers; Chaim Putterman

The central nervous system manifestations of SLE (neuropsychiatric lupus, NPSLE) occur frequently, though are often difficult to diagnose and treat. Symptoms of NPSLE can be quite diverse, including chronic cognitive and emotional manifestations, as well as acute presentations, such as stroke and seizures. Although the pathogenesis of NPSLE has yet to be well characterized, B-cell mediated damage is believed to be an important contributor. B-cells and autoantibodies may traverse the blood brain barrier promoting an inflammatory environment consisting of glia activation, neurodegeneration, and consequent averse behavioral outcomes. This review will evaluate the various suggested roles of B-cells and autoantibodies in NPSLE, as well as therapeutic modalities targeting these pathogenic mediators.


Autoimmunity Reviews | 2017

The blood brain barrier and neuropsychiatric lupus: new perspectives in light of advances in understanding the neuroimmune interface.

Ariel Stock; Sivan Gelb; Ofer Pasternak; Ayal Ben-Zvi; Chaim Putterman

Experts have previously postulated a linkage between lupus associated vascular pathology and abnormal brain barriers in the immunopathogenesis of neuropsychiatric lupus. Nevertheless, there are some discrepancies between the experimental evidence, or its interpretation, and the working hypotheses prevalent in this field; specifically, that a primary contributor to neuropsychiatric disease in lupus is permeabilization of the blood brain barrier. In this commonly held view, any contribution of the other known brain barriers, including the blood-cerebrospinal fluid and meningeal barriers, is mostly excluded from the discussion. In this review we will shed light on some of the blood brain barrier hypotheses and try to trace their roots. In addition, we will suggest new research directions to allow for confirmation of alternative interpretations of the experimental evidence linking the pathology of intra-cerebral vasculature to the pathogenesis of neuropsychiatric lupus.


Frontiers in Immunology | 2018

A distinct T follicular helper cell subset infiltrates the brain in murine neuropsychiatric lupus

Shweta Jain; Ariel Stock; Fernando Macian; Chaim Putterman

Neuropsychiatric symptoms in systemic lupus erythematosus (SLE) are not uncommon, yet the mechanisms underlying disease initiation and progression in the brain are incompletely understood. Although the role of T cells in other lupus target organs such as the kidney is well defined, which T cells contribute to the pathogenesis of neuropsychiatric SLE is not known. The present study was aimed at characterizing the CD4 T cell populations that are present in the choroid plexus (CP) of MRL/MpJ-faslpr mice, the primary site of brain infiltration in this classic lupus mouse model which exhibits a prominent neurobehavioral phenotype. T cells infiltrating the CP of MRL/MpJ-faslpr mice were characterized and subset identification was done by multiparameter flow cytometry. We found that the infiltrating CD4 T cells are activated and have an effector phenotype. Importantly, CD4 T cells have a T follicular helper cell (TFH) like phenotype, as evidenced by their surface markers and signature cytokine, IL-21. In addition, CD4 TFH cells also secrete significant levels of IFN-γ and express Bcl-6, thereby conforming to a potentially pathogenic T helper population that can drive the disease progression. Interestingly, the regulatory axis comprising CD4 T regulatory cells is diminished. These results suggest that accumulation of CD4 TFH in the brain of MRL/MpJ-faslpr mice may contribute to the neuropsychiatric manifestations of SLE, and point to this T cell subset as a possible novel therapeutic candidate.


Arthritis Research & Therapy | 2018

Highly selective inhibition of Bruton’s tyrosine kinase attenuates skin and brain disease in murine lupus

Samantha A. Chalmers; Jing Wen; Jessica Doerner; Ariel Stock; Carla M. Cuda; Hadijat M. Makinde; Harris Perlman; Todd Bosanac; Deborah Webb; Gerald Nabozny; Jay S. Fine; Elliott S. Klein; Meera Ramanujam; Chaim Putterman

BackgroundSystemic lupus erythematosus (SLE) is a systemic autoimmune disease that affects different end organs, including skin and brain. We and others have previously shown the importance of macrophages in the pathogenesis of cutaneous and neuropsychiatric lupus. Additionally, autoantibodies produced by autoreactive B cells are thought to play a role in both the skin and central nervous system pathologies associated with SLE.MethodsWe used a novel inhibitor of Bruton’s tyrosine kinase (BTK), BI-BTK-1, to target both macrophage and B cell function in the MRL-lpr/lpr murine model of SLE, and examined the effect of treatment on skin and brain disease.ResultsWe found that treatment with BI-BTK-1 significantly attenuated the lupus associated cutaneous and neuropsychiatric disease phenotypes in MRL/lpr mice. Specifically, BI-BTK-1 treated mice had fewer macroscopic and microscopic skin lesions, reduced cutaneous cellular infiltration, and diminished inflammatory cytokine expression compared to control mice. BTK inhibition also significantly improved cognitive function, and decreased accumulation of T cells, B cells, and macrophages within the central nervous system, specifically the choroid plexus.ConclusionsDirected therapies may improve the response rate in lupus-driven target organ involvement, and decrease the dangerous side effects associated with global immunosuppression. Overall, our results suggest that inhibition of BTK may be a promising therapeutic option for cutaneous and neuropsychiatric disease associated with SLE.


Frontiers in Immunology | 2018

Neuropsychiatric Systemic Lupus Erythematosus Is Dependent on Sphingosine-1-Phosphate Signaling

Elise V. Mike; Hadijat M. Makinde; Ariel Stock; Maria Gulinello; Gaurav T. Gadhvi; Deborah R. Winter; Carla M. Cuda; Chaim Putterman

About 40% of patients with systemic lupus erythematosus experience diffuse neuropsychiatric manifestations, including impaired cognition and depression. Although the pathogenesis of diffuse neuropsychiatric SLE (NPSLE) is not fully understood, loss of brain barrier integrity, autoreactive antibodies, and pro-inflammatory cytokines are major contributors to disease development. Fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator, prevents lymphocyte egress from lymphoid organs through functional antagonism of S1P receptors. In addition to reducing the circulation of autoreactive lymphocytes, fingolimod has direct neuroprotective effects such as preserving brain barrier integrity and decreasing pro-inflammatory cytokine secretion by astrocytes and microglia. Given these effects, we hypothesized that fingolimod would attenuate neurobehavioral deficits in MRL-lpr/lpr (MRL/lpr) mice, a validated neuropsychiatric lupus model. Fingolimod treatment was initiated after the onset of disease, and mice were assessed for alterations in cognitive function and emotionality. We found that fingolimod significantly attenuated spatial memory deficits and depression-like behavior in MRL/lpr mice. Immunofluorescent staining demonstrated a dramatic lessening of brain T cell and macrophage infiltration, and a significant reduction in cortical leakage of serum albumin, in fingolimod treated mice. Astrocytes and endothelial cells from treated mice exhibited reduced expression of inflammatory genes, while microglia showed differential regulation of key immune pathways. Notably, cytokine levels within the cortex and hippocampus were not appreciably decreased with fingolimod despite the improved neurobehavioral profile. Furthermore, despite a reduction in splenomegaly, lymphadenopathy, and circulating autoantibody titers, IgG deposition within the brain was unaffected by treatment. These findings suggest that fingolimod mediates attenuation of NPSLE through a mechanism that is not dependent on reduction of autoantibodies or cytokines, and highlight modulation of the S1P signaling pathway as a novel therapeutic target in lupus involving the central nervous system.


Journal of Neuroinflammation | 2015

Neuropsychiatric systemic lupus erythematosus persists despite attenuation of systemic disease in MRL/lpr mice

Ariel Stock; Jing Wen; Jessica Doerner; Leal Herlitz; Maria Gulinello; Chaim Putterman

Collaboration


Dive into the Ariel Stock's collaboration.

Top Co-Authors

Avatar

Chaim Putterman

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jing Wen

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jessica Doerner

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Maria Gulinello

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Samantha A. Chalmers

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yumin Xia

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge