Arif Muhammad
University of Lethbridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arif Muhammad.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Bryan Kolb; Richelle Mychasiuk; Arif Muhammad; Yilin Li; Douglas O. Frost; Robbin Gibb
The prefrontal cortex (PFC) receives input from all other cortical regions and functions to plan and direct motor, cognitive, affective, and social behavior across time. It has a prolonged development, which allows the acquisition of complex cognitive abilities through experience but makes it susceptible to factors that can lead to abnormal functioning, which is often manifested in neuropsychiatric disorders. When the PFC is exposed to different environmental events during development, such as sensory stimuli, stress, drugs, hormones, and social experiences (including both parental and peer interactions), the developing PFC may develop in different ways. The goal of the current review is to illustrate how the circuitry of the developing PFC can be sculpted by a wide range of pre- and postnatal factors. We begin with an overview of prefrontal functioning and development, and we conclude with a consideration of how early experiences influence prefrontal development and behavior.
Neuroscience | 2012
Arif Muhammad; Cathy Carroll; Bryan Kolb
The long-term effects of stress during development have been well characterized. However, the effects of developmental stress on the underlying neurological mechanisms related to the reward system are not well understood. The present report studied the long term effects of stress during development on the structural plasticity in the cortical and subcortical regions. Rats exposed to stress during embryonic development (prenatal stress; PS) or soon after birth (maternal separation; MS) were studied for structural alteration at the neuronal level in the nucleus accumbens (NAc), orbital frontal cortex (OFC), and medial prefrontal cortex (mPFC). The findings show that stress during development increased dendritic branching, length, and spine density in the NAc, and subregions of the PFC. PS experience increased dendritic branching and length in the mPFC apical and basilar dendrites. In contrast, a PS-associated decrease in dendritic branching and length was observed in the basilar branches of the OFC. MS resulted in an increase in dendritic growth and spine density in the subregions of the PFC. The effect of PS on neuroanatomy was more robust than MS despite the shorter duration and intensity. The altered dendritic growth and spine density associated with stress during development could have potential impact on NAc and PFC related behaviors.
Behavioural Brain Research | 2011
Arif Muhammad; Bryan Kolb
We studied the long-term influence of maternal separation (MS) on periadolescent behavior, adult amphetamine (AMPH) sensitization, and structural plasticity in the corticolimbic regions in rats. Male and female pups, separated daily for 3h from the dam during postnatal day 3-21, were tested for periadolescent exploratory, emotional, cognitive, and social behaviors. The development and persistence of drug-induced behavioral sensitization were tested by repeated AMPH administration and a challenge, respectively. The spine density was examined in the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the orbital frontal cortex (OFC) from Golgi-Cox stained neurons. The results showed that MS enhanced anxiety-like behavior in males. MS abolished the sex difference in playful attacks observed in controls with resultant feminization of male play behavior. Furthermore, the probability of complete rotation defense to face an attack was decreased in females. AMPH administration resulted in the development of behavioral sensitization that persisted at least for two weeks. Sensitization was not influenced by MS. MS increased the spine density in the NAc, the mPFC, and the OFC. Repeated AMPH administration increased the spine density in the NAc and the mPFC, and decreased it in the OFC. MS blocked the drug-induced alteration in these regions. In sum, MS during development influenced periadolescent behavior in males, and structurally reorganized cortical and subcortical brain regions without affecting AMPH-induced behavioral sensitization.
Developmental Neuroscience | 2011
Arif Muhammad; Bryan Kolb
The present study investigated the effect of prenatal stress (PS) on juvenile behavior and adult amphetamine (AMPH) sensitization, as well as the effect of the interaction between experience (i.e. PS) and drug (i.e. AMPH) on cortical thickness and neuronal morphology in corticolimbic regions in rats. Juvenile male and female rats, exposed to gestational stress, were tested in behavioral tasks that included open field locomotion, elevated plus maze, novel object recognition, and play fighting behavior. The development and persistence of drug-induced behavioral sensitization in adults were tested by chronic AMPH administration and challenge, respectively. Spine density in corticolimbic regions was examined for structural plasticity. The findings showed that PS produced anxiety-like behavior in males. Furthermore, PS in males resulted in female-like play and enhanced partial rotation defense, whereas in females PS increased the probability of evasion in response to an attack. AMPH administration resulted in gradual increase in behavioral sensitization that persisted at least for 2 weeks; however, PS did not influence AMPH-induced behavioral sensitization in either male or female rats. Moreover, PS increased the spine density in the nucleus accumbens (NAc) and decreased it in the medial prefrontal cortex (mPFC) without any alteration in the orbital frontal cortex (OFC). Similarly, AMPH administration increased spine density in the NAc and mPFC, whereas a decrease was observed in the OFC. However, PS prevented the drug-induced alterations in the spine density observed in controls. In sum, PS modulated juvenile behavior and altered brain morphology without influencing AMPH-induced behavioral sensitization substantially.
Neuron | 2013
Edgar Bermudez Contreras; Andrea Gomez Palacio Schjetnan; Arif Muhammad; Péter Barthó; Bruce L. McNaughton; Bryan Kolb; Aaron J. Gruber; Artur Luczak
Memory formation is hypothesized to involve the generation of event-specific neural activity patterns during learning and the subsequent spontaneous reactivation of these patterns. Here, we present evidence that these processes can also be observed in urethane-anesthetized rats and are enhanced by desynchronized brain state evoked by tail pinch, subcortical carbachol infusion, or systemic amphetamine administration. During desynchronization, we found that repeated tactile or auditory stimulation evoked unique sequential patterns of neural firing in somatosensory and auditory cortex and that these patterns then reoccurred during subsequent spontaneous activity, similar to what we have observed in awake animals. Furthermore, the formation of these patterns was blocked by an NMDA receptor antagonist, suggesting that the phenomenon depends on synaptic plasticity. These results suggest that anesthetized animals with a desynchronized brain state could serve as a convenient model for studying stimulus-induced plasticity to improve our understanding of memory formation and replay in the brain.
Synapse | 2012
Arif Muhammad; Richelle Mychasiuk; Ayuno Nakahashi; S. Russell Hossain; Robbin Gibb; Bryan Kolb
Although there has been considerable research conducted regarding the long‐term effects of prenatal exposure to nicotine, there has been little examination of how this experience influences brain development. This study was designed to examine if there are morphological changes (dendritic branching, dendritic length, and spine density) in medial prefrontal cortex, orbital frontal cortex, parietal cortex, and nucleus accumbens associated with exposure to nicotine during gestation. Nicotine or saline was administered to pregnant Long Evans dams for the duration of pregnancy. Golgi‐Cox techniques were used to examine neuroanatomy of offspring at postnatal day 21. The dendritic changes identified in rats exposed to nicotine prenatally resembled neuroanatomical changes that are identified in rats administered with nicotine in adulthood. Of the 18 anatomical parameters measured, 11 exhibited significant modification, with two parameters apical and basilar spine density in parietal cortex demonstrating sex‐dependent modification. These early changes in anatomy and behavior have important implications for later plasticity and long‐term well‐being. Synapse 66:950–954, 2012.
Progress in Brain Research | 2013
Bryan Kolb; Richelle Mychasiuk; Arif Muhammad; Robbin Gibb
The developing normal brain shows a remarkable capacity for plastic change in response to a wide range of experiences including sensory and motor experience, psychoactive drugs, parent-child relationships, peer relationships, stress, gonadal hormones, intestinal flora, diet, and injury. The effects of injury vary with the precise age-at-injury, with the general result being that injury during cell migration and neuronal maturation has a poor functional outcome, whereas similar injury during synaptogenesis has a far better outcome. A variety of factors influence functional outcome including the nature of the behavior in question and the age at behavioral assessment as well as pre- and postinjury experiences. Here, we review the phases of brain development, how factors influence brain, and behavioral development in both the normal and perturbed brain, and propose mechanisms that may underlie these effects.
Behavioral Neuroscience | 2011
Arif Muhammad; Shakhawat Hossain; Sergio M. Pellis; Bryan Kolb
This study investigated the effect of postnatal tactile stimulation (TS) on juvenile behavior, adult amphetamine (AMPH) sensitization, and the interaction of TS and AMPH on prefrontal cortical (PFC) thickness and striatum size. Pups received TS by stroking daily with a feather duster from birth till weaning and were tested, as juveniles, in behavioral tasks including open field locomotion, elevated maze, novel object recognition, and play fighting behavior. Development and persistence of drug-induced behavioral sensitization was tested by chronic AMPH administration and challenge, respectively. PFC thickness and striatum size were assessed from serial brain sections. The findings showed that TS rats spent less time with novel objects on first exposure but open field locomotion and elevated plus maze tasks were not affected substantially. TS reduced the frequency of play fighting and enhanced evasion in response to a playful attack, but only in males. The probability of complete rotation defense, leading to a supine posture during play, was reduced in both sexes. AMPH administration resulted in gradual increase in behavioral sensitization that persisted at least for 2 weeks. However, TS rats exhibited attenuated AMPH sensitization compared to sex-matched controls. Neuroanatomically, AMPH reduced the PFC thickness in control females but enlarged the posterior striatum in control males. TS experience blocked these effects. In summary, TS during development modulated the response to novel objects and altered social behaviors and attenuated AMPH-induced behavioral sensitization by preventing drug-induced structural alteration in the PFC and the striatum, brain regions implicated in drug abuse.
Brain Research | 2013
Richelle Mychasiuk; Arif Muhammad; Robbin Gibb; Bryan Kolb
Prenatal exposure to nicotine has been associated with many long-term cognitive and behavioral abnormalities. Based upon these observable outcomes, we hypothesized that prenatal nicotine exposure would induce lasting changes in dendritic morphology and synaptic connectivity throughout the cortex. Pregnant Long-Evans rats were administered nicotine or saline for the duration of pregnancy and offspring were sacrificed at P100 for Golgi-Cox analysis (dendritic length, dendritic branching, and spine density) of the prefrontal cortex (AID and Cg3), parietal cortex, and nucleus accumbens. In male offspring dendritic branching increased in AID and NAc, but decreased in the apical field of Cg3; spine density increased everywhere except NAc where it decreased; and dendritic length was increased in Cg3(basilar) and NAc but reduced in PAR(basilar). In female offspring, dendritic branching increased in NAc but decreased in AID; spine density increased in AID and PAR but decreased in Cg3 and NAc, and dendritic length was reduced in Cg3, PAR, and NAc. As changes were identified at P100, prenatal exposure to nicotine dramatically reorganized neuroanatomy in a persistent manner, likely altering the brains response to normal and abnormal experiences.
Behavioural Brain Research | 2013
Richelle Mychasiuk; Arif Muhammad; Slava Ilnytskyy; Bryan Kolb
Highly addictive drugs like nicotine and amphetamine not only change an individuals behaviour in the short and long-term, they also induce persistent changes in neuronal excitability and morphology. Although research has started to examine the epigenetic changes that occur immediately after drug exposure, there has been little investigation into the persistent modifications to the epigenome that likely moderate the stable maintenance of the neurological changes. Male Long-Evans rats were administered amphetamine, nicotine, or saline for 14 consecutive days, given a 14 day withdrawal period, and then sacrificed. DNA from the mPFC, OFC, and nucleus accumbens (NAc) was used for global DNA methylation analysis and RNA from the same brain regions was used for gene expression analysis. Following the two-week withdrawal period, exposure to amphetamine or nicotine was associated with a decrease in global DNA methylation in each brain region examined. Previous exposure to nicotine was associated with changes in expression of 16 genes (NAc:6, mPFC:5, OFC:5) whereas exposure to amphetamine was associated with changes in expression of 25 genes (NAc:13, OFC:8, mPFC:4). The persistent epigenetic changes associated with exposure to amphetamine and nicotine were region and drug dependent, and differ from the latent epigenetic changes that occur immediately after drug exposure. The changes in DNA methylation are consistent with the gene expression results and provide further support to the notion that DNA methylation is the key regulatory mechanism for experience dependent changes.