Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arif Ul Hasan is active.

Publication


Featured researches published by Arif Ul Hasan.


Molecular and Cellular Endocrinology | 2015

Eicosapentaenoic acid upregulates VEGF-A through both GPR120 and PPARγ mediated pathways in 3T3-L1 adipocytes.

Arif Ul Hasan; Koji Ohmori; Kumi Konishi; Junsuke Igarashi; Takeshi Hashimoto; Kazuyo Kamitori; Fuminori Yamaguchi; Ikuko Tsukamoto; Toru Uyama; Yasuhiro Ishihara; Takahisa Noma; Masaaki Tokuda; Masakazu Kohno

Vascular endothelial growth factor-A (VEGF-A) released from adipocytes promotes angiogenesis; and thereby ameliorates the local hypoxia-induced adipose inflammation and insulin resistance. Here, we newly found that eicosapentaenoic acid (EPA) upregulated both mRNA expression and release of VEGF-A in mature 3T3-L1 adipocytes. Silencing mRNA of G-protein coupled receptor 120 (GPR120) and specific inhibition of peroxisome proliferator-activated receptor γ (PPARγ) by GW9662 respectively attenuated the EPA-induced augmentation of VEGF-A release by adipocytes. Furthermore, transfection of GPR120 gene alone and PPARγ gene alone to HEK293 cells respectively increased the promoter activity of VEGF-A as assessed by luciferase reporter assay, which was further augmented when both genes were co-transfected. Promoter deletion analysis and chromatin immunoprecipitation assay revealed that co-transfection of GPR120 enhanced EPA-induced PPARγ binding to PPAR-response element in VEGF-A promoter region. Thus, by the synchronized activation of a membrane receptor GRP120 and a nuclear receptor PPARγ, EPA enhances VEGF-A production in adipocytes.


Atherosclerosis | 2010

Beneficial direct adipotropic actions of pitavastatin in vitro and their manifestations in obese mice

Yasuhiro Ishihara; Koji Ohmori; Mizuki Mizukawa; Arif Ul Hasan; Takahisa Noma; Masakazu Kohno

OBJECTIVE Prevention of cardiovascular complications in obese patients frequently includes statin administration for coexisting dyslipidemia. Herein, we investigated the impacts of pitavastatin at clinically relevant doses on adipose dysfunction and insulin resistance. METHODS We treated 3T3-L1 preadipocytes with 10-100 ng/ml pitavastatin from initiation of differentiation (Day 0) to Day 8 (differentiation/maturation phase) or from Day 8 to Day 16 (post-maturation phase). Subsequently, we administered pitavastatin (6.2mg/day/kg) to 7-week-old female KKAy mice for 6 weeks; untreated KKAy mice served as obese controls. RESULTS Pitavastatin impaired neither lipogenesis nor adiponectin expression during the differentiation/maturation phase. During the post-maturation phase, pitavastatin prevented excessive triglyceride accumulation, which was associated with attenuated glucose transporter-4 expression, and dose-dependently upregulated hormone-sensitive lipase expression. Decrements in the adiponectin/plasminogen activator-1 ratio were also dose-dependently inhibited. In KKAy mice, Coulter counter analyses revealed that pitavastatin treatment significantly decreased (by 16.8%) the frequency of hypertrophic adipocytes (>150 microm in diameter) in parametrial adipose pads, of which total weight remained unaltered. Correspondingly, plasma adiponectin was significantly higher in pitavastatin-treated KKAy mice than in the untreated KKAy mice (12.5+/-3.8 microg/ml vs. 8.3+/-1.5 microg/ml, p<0.05). Moreover, the area under the time-glucose curve after intraperitoneal insulin was decreased by 16% in pitavastatin-treated KKAy mice (p<0.05 vs. untreated controls). CONCLUSIONS Pitavastatin did not impair differentiation/maturation of preadipocytes and prevented their deterioration with hypertrophy after maturation at clinical concentrations in vitro. These effects likely contributed to improved insulin sensitivity, in an obese model, via prevention of adipocyte hypertrophy and adipocytokine dysregulation.


Hypertension Research | 2014

Valsartan ameliorates the constitutive adipokine expression pattern in mature adipocytes: a role for inverse agonism of the angiotensin II type 1 receptor in obesity

Arif Ul Hasan; Koji Ohmori; Takeshi Hashimoto; Kazuyo Kamitori; Fuminori Yamaguchi; Yasuhiro Ishihara; Naoko Ishihara; Takahisa Noma; Masaaki Tokuda; Masakazu Kohno

Angiotensin (Ang) II receptor blockers (ARBs) alleviate obesity-related insulin resistance, which suggests an important role for the Ang II type 1 receptor (AT1R) in the regulation of adipocytokines. Therefore, we treated mature 3T3-L1 adipocytes with 50 μmol l−1 of valsartan, a selective AT1R blocker without direct agonism to peroxisome proliferator-activated receptor (PPAR)-γ. In the absence of effective concentrations of Ang II, unstimulated mature adipocytes expressed and secreted high levels of interleukin (IL)-6. This constitutive proinflammatory activity was attenuated by the suppression of extracellular signal-regulated kinase phosphorylation by valsartan but was unaffected by the Ang II type 2 receptor blocker PD123319. COS7 cells co-transfected with AT1R and IL-6, which expressed NF-κB but lacked PPAR-γ, showed no constitutive but substantial ligand-dependent IL-6 reporter activity, which was counteracted by valsartan. Valsartan preserved cytosolic IκB-α and subsequently reduced nuclear NF-κB1 protein expression in mature adipocytes. Interestingly, valsartan did not increase PPAR-γ messenger RNA expression per se but enhanced the transcriptional activity of PPAR-γ in mature adipocytes; this enhancement was accompanied by upregulation of the PPAR coactivator (PGC)-1α. Moreover, T0090907, a PPAR-γ inhibitor, increased IL-6 expression, and this increase was attenuated by valsartan. Indeed, addition of valsartan without direct PPAR-γ agonism increased adiponectin production in mature adipocytes. Together, the findings indicate that valsartan blocks the constitutive AT1R activity involving the NF-κB pathway that limits PPAR-γ activity in mature adipocytes. Thus, inverse agonism of AT1R attenuates the spontaneous proinflammatory response and enhances the constitutive insulin-sensitizing activities of mature adipocytes, which may underlie the beneficial metabolic impacts of ARBs.


PLOS ONE | 2013

Mifepristone Promotes Adiponectin Production and Improves Insulin Sensitivity in a Mouse Model of Diet-Induced-Obesity

Takeshi Hashimoto; Junsuke Igarashi; Arif Ul Hasan; Koji Ohmori; Masakazu Kohno; Yukiko Nagai; Tetsuo Yamashita; Hiroaki Kosaka

The steroid receptor antagonist mifepristone is used as an anti-cancer agent, eliciting both cytostatic and cytotoxic effects on malignant cells. However, the metabolic effects of long-term treatment with mifepristone have remained unclear. The effects of mifepristone on insulin sensitivity and adiponectin secretion were evaluated both in in vivo and in vitro. First, we explored the effects of mifepristone, on metabolic functions in obese mice receiving a high-fat diet. When these mice were fed mifepristone, they exhibited a marked improvement in insulin sensitivity, attenuated hepatic injury, and decreased adipocyte size, compared with mice that received only the high-fat diet. Intriguingly, mifepristone-treated mice showed significantly elevated plasma adiponectin levels. Second, we tested the effects of mifepristone on differentiated 3T3-L1 adipocytes in vitro. When differentiated adipocytes were treated with mifepristone for 48 h, adiponectin was upregulated at both mRNA and protein levels. Collectively, these results reveal novel actions of mifepristone on metabolic functions, in vivo and in vitro, in which the drug exerts antidiabetic effects associated with an upregulation in adiponectin-secretion.


Biochemical and Biophysical Research Communications | 2011

Pioglitazone promotes preadipocyte proliferation by downregulating p16Ink4a

Arif Ul Hasan; Koji Ohmori; Takeshi Hashimoto; Kazuyo Kamitori; Yuko Hirata; Yasuhiro Ishihara; Naoko Okamoto; Takahisa Noma; Hiroaki Kosaka; Masaaki Tokuda; Masakazu Kohno

Pioglitazone, a synthetic ligand of peroxisome proliferator-activated receptor (PPAR)γ, causes preadipocyte proliferation through a mechanism which still remains elusive. Here, to address the mechanism, we investigated the effects of PPARγ and pioglitazone on the kinetics of cyclin-dependent kinase inhibitors, especially with p16(Ink4a) (p16) centered, by employing 3T3-L1 preadipocytes. Pioglitazone promoted preadipocyte proliferation by increasing S and G(2)/M cell-cycle entry, which was accompanied by decreased p16 mRNA expression. PPARγ overexpression along with the luciferase reporter assay confirmed that PPARγ was crucial for the downregulation of p16 mRNA transcription, and that the action was augmented by pioglitazone. Thus, pioglitazone exerted cell-cycle dependent promoting effect on preadipocyte proliferation, of which mechanisms include p16-downregulation through PPARγ.


BMC Evolutionary Biology | 2008

Genetic diversity in two sibling species of the Anopheles punctulatus group of mosquitoes on Guadalcanal in the Solomon Islands

Arif Ul Hasan; Setsuo Suguri; Chigusa Fujimoto; Rodney Londari Itaki; Masakazu Harada; Masato Kawabata; Hugo Bugoro; Bobogare Albino

BackgroundThe mosquito Anopheles irenicus, a member of the Anopheles punctulatus group, is geographically restricted to Guadalcanal in the Solomon Islands. It shows remarkable morphological similarities to one of its sibling species, An. farauti sensu stricto (An. farauti s.s.), but is dissimilar in host and habitat preferences. To infer the genetic variations between these two species, we have analyzed mitochondrial cytochrome oxidase subunit II (COII) and nuclear ribosomal internal transcribed spacer 2 (ITS2) sequences from Guadalcanal and from one of its nearest neighbours, Malaita, in the Solomon Islands.ResultsAn. farauti s.s. was collected mostly from brackish water and by the human bait method on both islands, whereas An. irenicus was only collected from fresh water bodies on Guadalcanal Island. An. irenicus is distributed evenly with An. farauti s.s. (ΦSC = 0.033, 0.38%) and its range overlaps in three of the seven sampling sites. However, there is a significant population genetic structure between the species (ΦCT = 0.863, P < 0.01; ΦST = 0.865, P < 0.01 and FST = 0.878, P < 0.01). Phylogenetic analyses suggest that An. irenicus is a monophyletic species, not a hybrid, and is closely related to the An. farauti s.s. on Guadalcanal. The time estimator suggests that An. irenicus diverged from the ancestral An. farauti s.s. on Guadalcanal within 29,000 years before present (BP). An. farauti s.s. expanded much earlier on Malaita (texp = 24,600 BP) than the populations on Guadalcanal (texp = 16,800 BP for An. farauti s.s. and 14,000 BP for An. irenicus).ConclusionThese findings suggest that An. irenicus and An. farauti s.s. are monophyletic sister species living in sympatry, and their populations on Guadalcanal have recently expanded. Consequently, the findings further suggest that An. irenicus diverged from the ancestral An. farauti s.s. on Guadalcanal.


Biochemical and Biophysical Research Communications | 2017

GPR120 in adipocytes has differential roles in the production of pro-inflammatory adipocytokines

Arif Ul Hasan; Koji Ohmori; Takeshi Hashimoto; Kazuyo Kamitori; Fuminori Yamaguchi; Takahisa Noma; Junsuke Igarashi; Kazuhito Tsuboi; Masaaki Tokuda; Akira Nishiyama; Masakazu Kohno

How nutritional excess leads to inflammatory responses in metabolic syndrome is not well characterized. Here, we evaluated the effects of ω-3 polyunsaturated fatty acid specific G-protein coupled receptor 120 (GPR120) activation on inflammatory pathways in adipocytes, and the influence of this process on macrophage migration. Using 3T3-L1 adipocytes, we found that agonizing GPR120 using its synthetic ligand, GSK137647, attenuated both basal and lipopolysaccharide-induced production of interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2). Moreover, the intervention reduced the phosphorylation of nuclear factor kappa B inhibitor alpha (IκBα) and nuclear translocation of nuclear factor kappa-B p65 subunit (p65). Furthermore, the silencing of GPR120 itself reduced IL-6 and CCL2 mRNA expression. Inhibition of protein kinase C (PKC) augmented the down-regulatory effect of GSK137647 on IL-6 and CCL2 mRNA. Using a luciferase assay to measure promoter activity of the IL-6 gene in mouse embryonic fibroblasts, we demonstrated that exogenous transfection of GPR120 alone reduced the promoter activity, which was augmented by GSK137647. Inhibition of PKC further reduced the promoter activity. Nevertheless, RAW 264.7 macrophages grown in conditioned medium collected from GSK137647-treated adipocytes attenuated the expressions of matrix metalloproteinases-9 and -3, and tissue inhibitor of metalloproteinase-1. Conditioned medium also inhibited the lipopolysaccharide-induced migration of these macrophages. Taken together, these findings provide critical evidence that although GPR120 is associated with a PKC-mediated pro-inflammatory pathway, the direct inhibitory effects of GPR120 on the nuclear factor kappa B pathway are anti-inflammatory. Moreover, GPR120 activity can attenuate the adipocyte-mediated enhanced production of extracellular matrix-modulating factors in macrophages and can reduce their migration by a paracrine mechanism.


Experimental Cell Research | 2017

IBMX protects human proximal tubular epithelial cells from hypoxic stress through suppressing hypoxia-inducible factor-1α expression

Arif Ul Hasan; Wararat Kittikulsuth; Fuminori Yamaguchi; Tuba M. Ansary; Asadur Rahman; Yuki Shibayama; Daisuke Nakano; Hirofumi Hitomi; Masaaki Tokuda; Akira Nishiyama

ABSTRACT Hypoxia predisposes renal fibrosis. This study was conducted to identify novel approaches to ameliorate the pathogenic effect of hypoxia. Using human proximal tubular epithelial cells we showed that a pan‐phosphodiesterase (PDE) inhibitor, 3‐isobutyl‐1‐methylxanthine (IBMX) dose and time dependently downregulated hypoxia‐inducible factor 1&agr; (HIF‐1&agr;) mRNA expression, which was further augmented by addition of a transcriptional inhibitor, actinomycin D. IBMX also increased the cellular cyclic adenosine monophosphate (cAMP) level. Luciferase assay showed that blocking of protein kinase A (PKA) using H89 reduced, while 8‐Br‐cAMP agonized the repression of HIF‐1&agr; promoter activity in hypoxic condition. Deletion of cAMP response element binding sites from the HIF‐1&agr; promoter abrogated the effect of IBMX. Western blot and immunofluorescent study confirmed that the CoCl2 induced increased HIF‐1&agr; protein in whole cell lysate and in nucleus was reduced by the IBMX. Through this process, IBMX attenuated both CoCl2 and hypoxia induced mRNA expressions of two pro‐fibrogenic factors, platelet‐derived growth factor B and lysyl oxidase. Moreover, IBMX reduced production of a mesenchymal transformation factor, &bgr;‐catenin; as well as protected against hypoxia induced cell‐death. Taken together, our study showed novel evidence that the PDE inhibitor IBMX can downregulate the transcription of HIF‐1&agr;, and thus may attenuate hypoxia induced renal fibrosis. HIGHLIGHTSIBMX dowregulates the mRNA expression of HIF‐1&agr; in tubular epithelial cells.Inhibiting PKA abrogates while activating cAMP enhances the effect of IBMX.IBMX reduces CoCl2 induced enhanced HIF‐1&agr; protein in the nucleus.IBMX downregulates hypoxia or CoCl2 induced enhanced PDGFB and LOX mRNAs.Effects of cAMP‐PKA mediated pathway on HIF‐1&agr; expression may contribute against renal fibrosis.


Journal of Cellular Biochemistry | 2018

PPARγ Activation Mitigates Glucocorticoid Receptor-Induced Excessive Lipolysis in Adipocytes via Homeostatic Crosstalk†

Arif Ul Hasan; Koji Ohmori; Takeshi Hashimoto; Kazuyo Kamitori; Fuminori Yamaguchi; Asadur Rahman; Masaaki Tokuda; Hiroyuki Kobori

Proper balance between lipolysis and lipogenesis in adipocytes determines the release of free fatty acids (FFA) and glycerol, which is crucial for whole body lipid homeostasis. Although, dysregulation of lipid homeostasis contributes to various metabolic complications such as insulin resistance, the regulatory mechanism remains elusive. This study clarified the individual and combined roles for glucocorticoid receptor (GCR) and peroxisome proliferator‐activated receptor (PPAR)γ pathways in lipid metabolism of adipocytes. In mature 3T3‐L1 adipocytes, GCR activation using dexamethasone upregulated adipose triglyceride lipase (ATGL) and downregulated phosphoenolpyruvate carboxykinase (PEPCK), resulting in enhanced glycerol release into the medium. In contrast, PPARγ ligand pioglitazone modestly upregulated ATGL and hormone sensitive lipase (HSL), but markedly enhanced PEPCK and glycerol kinase (GK), thereby suppressed glycerol release. Dexamethasone showed permissive like effect on PPARγ target genes including perilipin A and aP2, therefore co‐administration of dexamethasone and pioglitazone demonstrated synergistic upregulation of these enzymes excepting PEPCK, of which downregulation by dexamethasone was abolished by pioglitazone to the level above control. Thus, the excessive glycerol release was prevented as the net outcome of the co‐administration. Consistently, the bodipy stain demonstrated that dexamethasone reduced the amount of cytosolic lipid, which was preserved in co‐treated adipocytes. Moreover, silencing of PPARγ suppressed the synergistic effects of co‐treatment on the lipolytic and lipogenic genes, and therefore the GCR pathway indeed involves PPARγ. In conclusion, crosstalk between GCR and PPARγ is largely synergistic but counter‐regulatory in lipogenic genes, of which enhancement prevents excessive glycerol and possibly FFA release by glucocorticoids into the circulation.


International Journal of Molecular Sciences | 2018

Altered Circadian Timing System-Mediated Non-Dipping Pattern of Blood Pressure and Associated Cardiovascular Disorders in Metabolic and Kidney Diseases

Asadur Rahman; Arif Ul Hasan; Akira Nishiyama; Hiroyuki Kobori

The morning surge in blood pressure (BP) coincides with increased cardiovascular (CV) events. This strongly suggests that an altered circadian rhythm of BP plays a crucial role in the development of CV disease (CVD). A disrupted circadian rhythm of BP, such as the non-dipping type of hypertension (i.e., absence of nocturnal BP decline), is frequently observed in metabolic disorders and chronic kidney disease (CKD). The circadian timing system, controlled by the central clock in the suprachiasmatic nucleus of the hypothalamus and/or by peripheral clocks in the heart, vasculature, and kidneys, modulates the 24 h oscillation of BP. However, little information is available regarding the molecular and cellular mechanisms of an altered circadian timing system-mediated disrupted dipping pattern of BP in metabolic disorders and CKD that can lead to the development of CV events. A more thorough understanding of this pathogenesis could provide novel therapeutic strategies for the management of CVD. This short review will address our and others’ recent findings on the molecular mechanisms that may affect the dipping pattern of BP in metabolic dysfunction and kidney disease and its association with CV disorders.

Collaboration


Dive into the Arif Ul Hasan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge