Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arin Bhattacharjee is active.

Publication


Featured researches published by Arin Bhattacharjee.


Free Radical Research | 2015

Sensitization of cisplatin therapy by a naphthalimide based organoselenium compound through modulation of antioxidant enzymes and p53 mediated apoptosis

Purbasha Ghosh; S. Singha Roy; Amitava Basu; Arin Bhattacharjee; S. Bhattacharya

Abstract The widely used anti-cancer drug cisplatin imparts various toxic manifestations in the host, with nephrotoxicity being the most severe one. The trace element selenium shows antioxidant activity in both human and animals. The present study was designed to assess the chemoprotecting and chemoenhancing efficacy of a naphthalimide based organoselenium compound 2-(5-selenocyanato-pentyl)-benzo[de]isoquinoline 1,3-dione during cisplatin chemotherapy in mice bearing Ehrlich ascites carcinoma cells. Cisplatin (5 mg/kg b.w.) was administered intraperitoneally and the organoselenium compound (3 mg/kg b.w.) was given by oral gavage in concomitant and pretreatment schedule. The effects of the test compound was evaluated by assaying biochemical, hematological, histological, genotoxicity parameters and by investigating induction of apoptosis in tumor cells, and calculating tumor growth response in the host. The organoselenium compound significantly prevented cisplatin induced generation of reactive oxygen species (ROS), reactive nitrogen species, and onset of lipid peroxidation in the kidney tissue of the experimental mice. In addition, the test compound was also substantially restored cisplatin induced depleted activities of the renal antioxidant enzymes and reduced glutathione level; prevented the serum blood urea nitrogen level, creatinine level, chromosomal aberration, DNA damage, histological alterations of kidney, and normalized the hematological profile of the tumor bearing mice. Furthermore, the organoselenium compound alone or during combination therapy induced apoptosis in tumor cells through mitochondria mediated and DNA damage mediated pathway and ultimately increased the life span of the tumor bearing host. Hence, the results showed that the test compound not only reduced the toxicity of cisplatin but also enhanced its anti-tumor efficacy.


Journal of Biomaterials Applications | 2014

Protective effect of Selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice

Arin Bhattacharjee; Abhishek Basu; Prosenjit Ghosh; Jaydip Biswas; Sudin Bhattacharya

Cyclophosphamide (CP) is the most commonly used chemotherapeutic drug for various types of cancer. However, its use causes severe cytotoxicity to normal cells in human. It is well known that the undesirable side effects are caused due to the formation of reactive oxygen species. Selenium is an essential micronutrient for both animals and humans and has antioxidant and membrane stabilizing property, but selenium is also toxic above certain level. Nano selenium has been well proved to be less toxic than inorganic selenium as well as certain organoselenium compounds. The objective of the study is to evaluate the protective role of Nano-Se against CP-induced hepatotoxicity and genotoxicity in Swiss albino mice. CP was administered intraperitoneally (25 mg/kg b.w.) and Nano-Se was given by oral gavages (2 mg Se/kg b.w.) in concomitant and pretreatment scheme. Intraperitoneal administration of CP induced hepatic damage as indicated by the serum marker enzymes aspartate and alanine transaminases and increased the malonaldehyde level, depleted the glutathione content and antioxidant enzyme activity (glutathione peroxidase, glutathione-s-transferase, superoxide dismutase and catalase), and induced DNA damage and chromosomal aberration. Oral administration of Nano-Se caused a significant reduction in malonaldehyde, ROS level and glutathione levels, restoration of antioxidant enzyme activity, reduction in chromosomal aberration in bone marrow, and DNA damage in lymphocytes and also in bone marrow. Moreover, the chemoprotective efficiency of Nano-Se against CP induced toxicity was confirmed by histopathological evaluation. The results support the protective effect of Nano-Se against CP-induced hepatotoxicity and genotoxicity.


Bioorganic & Medicinal Chemistry Letters | 2010

Naphthalimide based novel organoselenocyanates: finding less toxic forms of selenium that would retain protective efficacy.

Somnath Singha Roy; Prosenjit Ghosh; Ugir Hossain Sk; Pramita Chakraborty; Jaydip Biswas; Syamsundar Mandal; Arin Bhattacharjee; Sudin Bhattacharya

A series of naphthalimide based organoselenocyanates were synthesized and screened for their toxicity as well as their ability to modulate several detoxifying/antioxidative enzyme levels at a primary screening dose of 3 mg/kg b.w. in normal Swiss albino mice for 30 days. Compound 4d showed highest activity in elevating the detoxifying/antioxidant enzymes levels.


Environmental Toxicology and Pharmacology | 2015

Prevention of cyclophosphamide-induced hepatotoxicity and genotoxicity: Effect of an L-cysteine based oxovanadium(IV) complex on oxidative stress and DNA damage.

Abhishek Basu; Arin Bhattacharjee; Amalesh Samanta; Sudin Bhattacharya

Vanadium has been emerged as a promising agent owing to its ability to prevent several types of cancer. This study was aimed to investigate the protective role of an organovanadium complex, viz., oxovanadium(IV)-L-cysteine methyl ester (VC-IV) against cyclophosphamide (CP)-induced hepatotoxicity and genotoxicity in mice. Oral administration of VC-IV quite effectively ameliorated CP-induced histopathological lesions and reduced levels of alanine transaminase, aspartate transaminase and alkaline phosphatase. In addition, VC-IV significantly attenuated CP-induced oxidative stress in the liver as evident from levels of reactive oxygen species, nitric oxide and lipid peroxidation. Restoration of glutathione level and activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase) were also observed upon VC-IV administration. Moreover, VC-IV significantly mitigated CP-induced chromosomal aberrations, micronuclei formation, DNA fragmentation and apoptosis in bone marrow cells and DNA damage in lymphocytes. The present study showed that VC-IV could provide adequate protection against CP-induced hepatotoxicity and genotoxicity in vivo.


Free Radical Research | 2016

Vanadium(III)-L-cysteine protects cisplatin-induced nephropathy through activation of Nrf2/HO-1 pathway

Amitava Basu; Singha Roy S; Arin Bhattacharjee; Bhuniya A; Baral R; Jaydip Biswas; S. Bhattacharya

Abstract Cisplatin (CDDP) is one of the first-line anticancer drugs; however, the major limitation of CDDP therapy is development of nephrotoxicity (25–35% cases), whose precise mechanism mainly involves oxidative stress, inflammation and cell death. Therefore, in search of a potential chemoprotectant, an organovanadium complex, viz., vanadium(III)-L-cysteine (VC-III) was evaluated against CDDP-induced nephropathy in mice. CDDP was administered intraperitoneally (5 mg/kg b.w.) and VC-III was given by oral gavage (1 mg/kg b.w.) in concomitant and pre-treatment schedule. The results showed that VC-III administration reduced (p < 0.001) serum creatinine and blood urea nitrogen levels, suggesting amelioration of renal dysfunction. VC-III treatment also significantly (p < 0.001) prevented CDDP-induced generation of reactive oxygen species, reactive nitrogen species, and onset of lipid peroxidation in kidney tissues of the experimental mice. In addition, VC-III also substantially (p < 0.001) restored CDDP-induced depleted activities of the renal antioxidant enzymes such as, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, and glutathione (reduced) level. Furthermore, histopathological study also confirmed the renoprotective efficacy of VC-III. Western blotting analysis appended by immunohistochemical data showed that VC-III treatment quite effectively reduced the expression of proinflammatory mediators such as, NFκβ, COX-2 and IL-6. VC-III administration also stimulated Nrf2-mediated antioxidant defense system by promotion of downstream antioxidant enzymes, such as HO-1. Moreover, treatment with VC-III significantly (p < 0.001) enhanced CDDP-mediated cytotoxicity in MCF-7 and NCI-H520 human cancer cell lines. Thus, VC-III can serve as a suitable chemoprotectant and increase the therapeutic window of CDDP in cancer patients.


Mutagenesis | 2015

Prevention of myelosuppression and genotoxicity induced by cisplatin in murine bone marrow cells: effect of an organovanadium compound vanadium(III)-l-cysteine

Abhishek Basu; Prosenjit Ghosh; Arin Bhattacharjee; Arup Ranjan Patra; Sudin Bhattacharya

Cisplatin (CDDP) is one of the first-line anticancer drugs indicated for use against various form of human malignancies; but, the therapeutic outcome of CDDP chemotherapy is limited due to the development of myelosuppression and genotoxicity which may lead to secondary cancer. Induction of oxidative stress in normal host cells is thought to be responsible for these adverse effects. Therefore, in search of a potential chemoprotectant, an oraganovanadium compound, viz., vanadium(III)-l-cysteine (VC-III) was evaluated against CDDP-induced clastogenicity and cytotoxicity in bone marrow cells of Swiss albino mice. CDDP was administered intraperitoneally (5mg/kg body weight [b.w.]) and VC-III was given by oral gavage (1mg/kg b.w.) in concomitant and pretreatment schedule. The results showed that VC-III administration significantly (P < 0.001) enhanced cell proliferation and inhibited apoptosis in the bone marrow niche indicating recovery of CDDP-induced myelosuppression. VC-III also significantly (P < 0.001) decreased the percentage of chromosomal aberrations, the frequency of micronuclei formation and the extent of DNA damage. The observed antigenotoxic and cytoprotective effect of VC-III was attributed to its attenuation of free radicals status and restoration of oxidised and reduced glutathione levels. These results suggest that VC-III is a potential candidate for future development as a chemoprotective agent against chemotherapy-associated primary and secondary complications.


Tumor Biology | 2017

Vanadium(III)-l-cysteine enhances the sensitivity of murine breast adenocarcinoma cells to cyclophosphamide by promoting apoptosis and blocking angiogenesis:

Abhishek Basu; Arin Bhattacharjee; Rathindranath Baral; Jaydip Biswas; Amalesh Samanta; Sudin Bhattacharya

Various epidemiological and preclinical studies have already established the cancer chemopreventive potential of vanadium-based compounds. In addition to its preventive efficacy, studies have also indicated the abilities of vanadium-based compounds to induce cell death selectively toward malignant cells. Therefore, the objective of the present investigation is to improve the therapeutic efficacy and toxicity profile of an alkylating agent, cyclophosphamide, by the concurrent use of an organovanadium complex, vanadium(III)-l-cysteine. In this study, vanadium(III)-l-cysteine (1 mg/kg body weight, per os) was administered alone as well as in combination with cyclophosphamide (25 mg/kg body weight, intraperitoneal) in concomitant and pretreatment schedule in mice bearing breast adenocarcinoma cells. The results showed that the combination treatment significantly decreased the tumor burden and enhanced survivability of tumor-bearing mice through generation of reactive oxygen species in tumor cells. These ultimately led to DNA damage, depolarization of mitochondrial membrane potential, and apoptosis in tumor cells. Further insight into the molecular pathway disclosed that the combination treatment caused upregulation of p53 and Bax and suppression of Bcl-2 followed by the activation of caspase cascade and poly (ADP-ribose) polymerase cleavage. Administration of vanadium(III)-l-cysteine also resulted in significant attenuation of peritoneal vasculature and sprouting of the blood vessels by decreasing the levels of vascular endothelial growth factor A and matrix metalloproteinase 9 in the ascites fluid of tumor-bearing mice. Furthermore, vanadium(III)-l-cysteine significantly attenuated cyclophosphamide-induced hematopoietic, hepatic, and genetic damages and provided additional survival advantages. Hence, this study suggested that vanadium(III)-l-cysteine may offer potential therapeutic benefit in combination with cyclophosphamide by augmenting anticancer efficacy and diminishing toxicity to the host.


Redox Report | 2017

Ameliorative effect of an oxovanadium (IV) complex against oxidative stress and nephrotoxicity induced by cisplatin.

Abhishek Basu; Arin Bhattacharjee; Subhadip Hajra; Amalesh Samanta; Sudin Bhattacharya

ABSTRACT Objective: The present study was designed to investigate the chemoprotective efficacy of an L-cysteine-based oxovanadium (IV) complex, namely, oxovanadium (IV)-L-cysteine methyl ester complex (VC-IV) against cisplatin (CDDP)-induced renal injury in Swiss albino mice. Methods: CDDP was administered intraperitoneally (5 mg/kg body weight) and VC-IV was administered orally (1 mg/kg body weight) in concomitant and 7 days pre-treatment schedule. Results: CDDP-treated mice showed marked kidney damage and renal failure. Administration of VC-IV caused significant attenuation of renal oxidative stress and elevation of antioxidant status. VC-IV also significantly decreased serum levels of creatinine and blood urea nitrogen, and improved histopathological lesions. Western blot analysis of the kidneys showed that VC-IV treatment resulted in nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) through modulation of cytosolic Kelch-like ECH-associated protein 1. Thus, VC-IV stimulated Nrf2-mediated activation of antioxidant response element (ARE) pathway and promoted expression of ARE-driven cytoprotective proteins, heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1, and enhanced activity of antioxidant enzymes. Interestingly, VC-IV did not alter the bioavailability and renal accumulation of CDDP in mice. Discussion: In this study, VC-IV exhibited strong nephroprotective efficacy by restoring antioxidant defense mechanisms and hence may serve as a promising chemoprotectant in cancer chemotherapy.


Drug and Chemical Toxicology | 2017

An oxovanadium(IV) complex protects murine bone marrow cells against cisplatin-induced myelotoxicity and DNA damage

Abhishek Basu; Arin Bhattacharjee; Amalesh Samanta; Sudin Bhattacharya

Abstract Cisplatin (CDDP) is one of the first-line anticancer drugs that has gained widespread use against various forms of human malignancies. But, the therapeutic outcome of CDDP therapy is limited due to its adverse effects including myelotoxicity and DNA damage which may lead to the subsequent risk of developing secondary cancer. Hence, in search of a suitable cytoprotectant, this study investigated the probable protective efficacy of an oxovanadium(IV) complex, namely oxovanadium(IV)-L-cysteine methyl ester complex (VC-IV) against CDDP-induced myelosuppression and genotoxic damage in the bone marrow cells of Swiss albino mice. CDDP was administered intraperitoneally (5 mg/kg b.w.) and VC-IV was administered orally (1 mg/kg b.w.) in concomitant and 7 d pretreatment schedule. Treatment with VC-IV in CDDP-treated mice significantly (p < 0.01) enhanced bone marrow cell proliferation and inhibited cell death in the bone marrow niche indicating improvement of CDDP-induced myelotoxicity. The organovanadium compound also significantly (p < 0.01) reduced the percentage of chromosomal aberrations, the frequency of micronuclei formation, and the extent of DNA damage. The observed chemoprotective effect of VC-IV was attributed to its anti-oxidant efficacy which significantly (p < 0.01) attenuated CDDP-induced generation of free radicals, and restored (p < 0.01) the levels of oxidized and reduced glutathione. Hence, VC-IV may serve as a promising candidate for future development to decrease the deleterious effects of CDDP in the bone marrow cells of cancer patients and associated secondary complications.


Scientific Reports | 2018

Design and synthesis of coumarin-based organoselenium as a new hit for myeloprotection and synergistic therapeutic efficacy in adjuvant therapy

Arup Ranjan Patra; Somnath Roy; Abhishek Basu; Avishek Bhuniya; Arin Bhattacharjee; Subhadip Hajra; Ugir Hossain Sk; Rathindranath Baral; Sudin Bhattacharya

A newly designed organoselenium compound, methyl substituted umbelliferone selenocyanate (MUS), was synthesized as a primary hit against the myelotoxic activity of carboplatin. MUS was administered at 6 mg/kg b.wt, p.o. in concomitant and pretreatment schedules with carboplatin (12 mg/kg b.wt, i.p. for 10 days) in female Swiss albino mouse. MUS treatment reduced (P < 0.001) the percentage of chromosomal aberrations, micronuclei formation, DNA damage and apoptosis in murine bone marrow cells and also enhanced (P < 0.001) the bone marrow cell proliferation of the carboplatin-treated mice. These activities cumulatively restored the viable bone marrow cell count towards normalcy. Myeloprotection by MUS was achieved, in part, due to a significant reduction in the ROS/RNS formation and restoration of glutathione redox pool. Additionally, MUS synergistically enhanced the cytotoxicity of carboplatin against two human cancer cell lines (MCF-7 and Colo-205). Furthermore, MUS can effectively potentiate the antitumour activity of carboplatin against two murine cancers (Dalton’s Lymphoma and Sarcoma-180) in vivo. These preclinical findings clearly indicate that MUS can improve the therapeutic index of carboplatin and ensures more effective therapeutic strategy against cancer for clinical development.

Collaboration


Dive into the Arin Bhattacharjee's collaboration.

Top Co-Authors

Avatar

Sudin Bhattacharya

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Abhishek Basu

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Jaydip Biswas

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prosenjit Ghosh

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Amitava Basu

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Arup Ranjan Patra

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Pramita Chakraborty

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Rathindranath Baral

Chittaranjan National Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

S. Bhattacharya

Chittaranjan National Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge