Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arina Hadziselimovic is active.

Publication


Featured researches published by Arina Hadziselimovic.


Science | 2012

The Amyloid Precursor Protein Has a Flexible Transmembrane Domain and Binds Cholesterol

Paul J. Barrett; Yuanli Song; Wade D. Van Horn; Eric J. Hustedt; Johanna M. Schafer; Arina Hadziselimovic; Andrew J. Beel; Charles R. Sanders

Insights into Amyloidogenesis The amyloid-β (Aβ) peptides associated with Alzheimers disease are generated by cleavage of the transmembrane C-terminal domain (C99) of the amyloid precursor protein by the enzyme γ-secretase. Barrett et al. (p. 1168) used nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy to show that C99 contains surface-associated N- and C-terminal helices and a flexibly curved transmembrane helix that is well suited to processive cleavage by γ-secretase. Elevated cholesterol levels have been found to increase Aβ generation. NMR titration together with mutagenesis revealed a binding site for cholesterol within C99 that included a motif previously implicated in protein oligomerization. The structure of the amyloid precursor protein transmembrane domain allows processive cleavage and cholesterol binding that may enhance cleavage. C99 is the transmembrane carboxyl-terminal domain of the amyloid precursor protein that is cleaved by γ-secretase to release the amyloid-β polypeptides, which are associated with Alzheimer’s disease. Nuclear magnetic resonance and electron paramagnetic resonance spectroscopy show that the extracellular amino terminus of C99 includes a surface-embedded “N-helix” followed by a short “N-loop” connecting to the transmembrane domain (TMD). The TMD is a flexibly curved α helix, making it well suited for processive cleavage by γ-secretase. Titration of C99 reveals a binding site for cholesterol, providing mechanistic insight into how cholesterol promotes amyloidogenesis. Membrane-buried GXXXG motifs (G, Gly; X, any amino acid), which have an established role in oligomerization, were also shown to play a key role in cholesterol binding. The structure and cholesterol binding properties of C99 may aid in the design of Alzheimer’s therapeutics.


Science | 2009

Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase

Wade D. Van Horn; Hak Jun Kim; Charles D. Ellis; Arina Hadziselimovic; Endah S. Sulistijo; Murthy D. Karra; Changlin Tian; Frank D. Sönnichsen; Charles R. Sanders

Opening the Portico Escherichia coli diacylglycerol kinase (DAGK) represents a family of integral membrane phosphotransferases that function in prokaryotic-specific metabolic pathways. Van Horn et al. (p. 1726) determined the structure of the 40-kilodalton functional homotrimer of E. coli DAGK by solution nuclear magnetic resonance spectroscopy. Each monomer comprises three transmembrane helices. The third transmembrane helix from each subunit is domain-swapped to pack against the first and second transmembrane helices from an adjacent subunit. These three helices frame a portico-like membrane-submerged cavity that contains residues critical for activity in close proximity to residues critical for folding. The structure provides insight into the determinants of lipid substrate specificity and phosphotransferase activity. Mutations reveal the distribution of sequence changes that alter folding and affect function in a membrane-bound enzyme. Escherichia coli diacylglycerol kinase (DAGK) represents a family of integral membrane enzymes that is unrelated to all other phosphotransferases. We have determined the three-dimensional structure of the DAGK homotrimer with the use of solution nuclear magnetic resonance. The third transmembrane helix from each subunit is domain-swapped with the first and second transmembrane segments from an adjacent subunit. Each of DAGK’s three active sites resembles a portico. The cornice of the portico appears to be the determinant of DAGK’s lipid substrate specificity and overhangs the site of phosphoryl transfer near the water-membrane interface. Mutations to cysteine that caused severe misfolding were located in or near the active site, indicating a high degree of overlap between sites responsible for folding and for catalysis.


Biochemistry | 2008

Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): does APP function as a cholesterol sensor?

Andrew J. Beel; Charles K. Mobley; Hak Jun Kim; Fang Tian; Arina Hadziselimovic; Bing K. Jap; James H. Prestegard; Charles R. Sanders

The amyloid precursor protein (APP) is subject to alternative pathways of proteolytic processing, leading either to production of the amyloid-beta (Abeta) peptides or to non-amyloidogenic fragments. Here, we report the first structural study of C99, the 99-residue transmembrane C-terminal domain of APP liberated by beta-secretase cleavage. We also show that cholesterol, an agent that promotes the amyloidogenic pathway, specifically binds to this protein. C99 was purified into model membranes where it was observed to homodimerize. NMR data show that the transmembrane domain of C99 is an alpha-helix that is flanked on both sides by mostly disordered extramembrane domains, with two exceptions. First, there is a short extracellular surface-associated helix located just after the site of alpha-secretase cleavage that helps to organize the connecting loop to the transmembrane domain, which is known to be essential for Abeta production. Second, there is a surface-associated helix located at the cytosolic C-terminus, adjacent to the YENPTY motif that plays critical roles in APP trafficking and protein-protein interactions. Cholesterol was seen to participate in saturable interactions with C99 that are centered at the critical loop connecting the extracellular helix to the transmembrane domain. Binding of cholesterol to C99 and, most likely, to APP may be critical for the trafficking of these proteins to cholesterol-rich membrane domains, which leads to cleavage by beta- and gamma-secretase and resulting amyloid-beta production. It is proposed that APP may serve as a cellular cholesterol sensor that is linked to mechanisms for suppressing cellular cholesterol uptake.


Structure | 2011

Structural Basis for the Trembler-J Phenotype of Charcot-Marie-Tooth Disease

Masayoshi Sakakura; Arina Hadziselimovic; Zhen Wang; Kevin L. Schey; Charles R. Sanders

Mutations in peripheral myelin protein 22 (PMP22) can result in the common peripheral neuropathy Charcot-Marie-Tooth disease (CMTD). The Leu16Pro mutation in PMP22 results in misassembly of the protein, which causes the Trembler-J (TrJ) disease phenotype. Here we elucidate the structural defects present in a partially folded state of TrJ PMP22 that are decisive in promoting CMTD-causing misfolding. In this state, transmembrane helices 2-4 (TM2-4) form a molten globular bundle, while transmembrane helix 1 (TM1) is dissociated from this bundle. The TrJ mutation was seen to profoundly disrupt the TM1 helix, resulting in increased backbone dynamics and changes in the tertiary interactions of TM1 with the PMP22 TM2-4 core in the folded state. Consequently, TM1 undergoes enhanced dissociation from the other transmembrane segments in TrJ PMP22, becoming available for recognition and sequestration by protein-folding quality control, which leads to loss of function and toxic accumulation of aggregates that result in CMTD.


Biochemistry | 2014

Modest effects of lipid modifications on the structure of caveolin-3.

Ji-Hun Kim; Dungeng Peng; Jonathan P. Schlebach; Arina Hadziselimovic; Charles R. Sanders

Caveolin-3 (Cav3) is an unconventional membrane protein that serves as a critical scaffolding hub in caveolae and is genetically linked to various muscle disorders. In this work, we report the expression, purification, and characterization of full-length human Cav3. To mimic the palmitoylation of endogenous Cav3, we developed a generally applicable approach to covalently attached thioalkyl chains at natively modified cysteine residues. Nuclear magnetic resonance measurements indicate that lipidation exerts only a modest and local effect on the Cav3 structure, with little impact on the structures of the N-terminal domain, the scaffolding domain, and the extreme C-terminus.


Biochemistry | 2012

Purification and Characterization of the Human γ-Secretase Activating Protein

Catherine L. Deatherage; Arina Hadziselimovic; Charles R. Sanders

Alzheimers disease is a fatal neurological disorder that is a leading cause of death, with its prevalence increasing as the average life expectancy increases worldwide. There is an urgent need to develop new therapeutics for this disease. A newly described protein, the γ-secretase activating protein (GSAP), has been proposed to promote elevated levels of amyloid-β production, an activity that seems to be inhibited using the well-establish cancer drug, imatinib (Gleevec). Despite much interest in this protein, there has been little biochemical characterization of GSAP. Here we report protocols for the recombinant bacterial expression and purification of this potentially important protein. GSAP is expressed in inclusion bodies, which can be solubilized using harsh detergents or urea; however, traditional methods of refolding were not successful in generating soluble forms of the protein that contained well-ordered and homogeneous tertiary structure. However, GSAP could be solubilized in detergent micelle solutions, where it was seen to be largely α-helical but to adopt only heterogeneous tertiary structure. Under these same conditions, GSAP did not associate with either imatinib or the 99-residue transmembrane C-terminal domain of the amyloid precursor protein. These results highlight the challenges that will be faced in attempts to manipulate and characterize this protein.


Molecular and Cellular Biology | 2012

β1 Integrin NPXY Motifs Regulate Kidney Collecting-Duct Development and Maintenance by Induced-Fit Interactions with Cytosolic Proteins

Sijo Mathew; Zhenwei Lu; Riya Palamuttam; Glenda Mernaugh; Arina Hadziselimovic; Jiang Chen; Nada Bulus; Leslie Gewin; Markus Voehler; Alexander Meves; Christoph Ballestrem; Reinhard Fässler; Ambra Pozzi; Charles R. Sanders; Roy Zent

ABSTRACT Loss of β1 integrin expression inhibits renal collecting-system development. Two highly conserved NPXY motifs in the distal β1 tail regulate integrin function by associating with phosphtyrosine binding (PTB) proteins, such as talin and kindlin. Here, we define the roles of these two tyrosines in collecting-system development and delineate the structural determinants of the distal β1 tail using nuclear magnetic resonance (NMR). Mice carrying alanine mutations have moderate renal collecting-system developmental abnormalities relative to β1-null mice. Phenylalanine mutations did not affect renal collecting-system development but increased susceptibility to renal injury. NMR spectra in bicelles showed the distal β1 tail is disordered and does not interact with the model membrane surface. Alanine or phenylalanine mutations did not alter β1 structure or interactions between α and β1 subunit transmembrane/cytoplasmic domains; however, they did decrease talin and kindlin binding. Thus, these studies highlight the fact that the functional roles of the NPXY motifs are organ dependent. Moreover, the β1 cytoplasmic tail, in the context of the adjacent transmembrane domain in bicelles, is significantly different from the more ordered, membrane-associated β3 integrin tail. Finally, tyrosine mutations of β1 NPXY motifs induce phenotypes by disrupting their interactions with critical integrin binding proteins like talins and kindlins.


Biochemistry | 2010

Look and See if It Is Time To Induce Protein Expression in Escherichia coli Cultures

K. Danielle Kelley; Lorenzo Q. Olive; Arina Hadziselimovic; Charles R. Sanders

It is shown that Methyl Red can be used as an indicator dye that changes color in Escherichia coli culture as a result of time- and cell density-dependent bleaching by azoreductase produced by the bacteria. For cell cultures that are being used to express a recombinant protein, this phenomenon can be exploited to provide a simple visual cue that cell cultures have reached an appropriate growth phase for addition of an agent to induce protein expression, such as isopropyl thiogalactoside.


Science Advances | 2018

Mechanisms of KCNQ1 channel dysfunction in long QT syndrome involving voltage sensor domain mutations

Hui Huang; Georg Kuenze; Jarrod A. Smith; Keenan C. Taylor; Amanda M. Duran; Arina Hadziselimovic; Jens Meiler; Carlos G. Vanoye; Alfred L. George; Charles R. Sanders

Long QT syndrome–associated mutations in KCNQ1 most often destabilize the protein, leading to mistrafficking and degradation. Mutations that induce loss of function (LOF) or dysfunction of the human KCNQ1 channel are responsible for susceptibility to a life-threatening heart rhythm disorder, the congenital long QT syndrome (LQTS). Hundreds of KCNQ1 mutations have been identified, but the molecular mechanisms responsible for impaired function are poorly understood. We investigated the impact of 51 KCNQ1 variants with mutations located within the voltage sensor domain (VSD), with an emphasis on elucidating effects on cell surface expression, protein folding, and structure. For each variant, the efficiency of trafficking to the plasma membrane, the impact of proteasome inhibition, and protein stability were assayed. The results of these experiments combined with channel functional data provided the basis for classifying each mutation into one of six mechanistic categories, highlighting heterogeneity in the mechanisms resulting in channel dysfunction or LOF. More than half of the KCNQ1 LOF mutations examined were seen to destabilize the structure of the VSD, generally accompanied by mistrafficking and degradation by the proteasome, an observation that underscores the growing appreciation that mutation-induced destabilization of membrane proteins may be a common human disease mechanism. Finally, we observed that five of the folding-defective LQTS mutant sites are located in the VSD S0 helix, where they interact with a number of other LOF mutation sites in other segments of the VSD. These observations reveal a critical role for the S0 helix as a central scaffold to help organize and stabilize the KCNQ1 VSD and, most likely, the corresponding domain of many other ion channels.


Science Advances | 2017

Peripheral myelin protein 22 alters membrane architecture.

Kathleen F. Mittendorf; Justin T. Marinko; Cheri M. Hampton; Zunlong Ke; Arina Hadziselimovic; Jonathan P. Schlebach; Cheryl L. Law; Jun Li; Elizabeth R. Wright; Charles R. Sanders; Melanie D. Ohi

Reconstitution of the PMP22 protein into lipid bilayers results in membrane assemblies that share common features with myelin. Peripheral myelin protein 22 (PMP22) is highly expressed in myelinating Schwann cells of the peripheral nervous system. PMP22 genetic alterations cause the most common forms of Charcot-Marie-Tooth disease (CMTD), which is characterized by severe dysmyelination in the peripheral nerves. However, the functions of PMP22 in Schwann cell membranes remain unclear. We demonstrate that reconstitution of purified PMP22 into lipid vesicles results in the formation of compressed and cylindrically wrapped protein-lipid vesicles that share common organizational traits with compact myelin of peripheral nerves in vivo. The formation of these myelin-like assemblies depends on the lipid-to-PMP22 ratio, as well as on the PMP22 extracellular loops. Formation of the myelin-like assemblies is disrupted by a CMTD-causing mutation. This study provides both a biochemical assay for PMP22 function and evidence that PMP22 directly contributes to membrane organization in compact myelin.

Collaboration


Dive into the Arina Hadziselimovic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles D. Ellis

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge