Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arindam Paul is active.

Publication


Featured researches published by Arindam Paul.


Frontiers in Bioscience | 2014

The breast cancer susceptibility genes (BRCA) in breast and ovarian cancers.

Arindam Paul; Soumen Paul

The Breast Cancer Susceptibility Genes, BRCA1 and BRCA2, are the dynamic regulators of genomic integrity. Inherited mutations in these genes are associated with the development of cancer in multiple organs including the breast and ovary. Mutations of BRCA1/2 genes greatly increase lifetime risk to develop breast and ovarian cancer and these mutations are frequently observed in hereditary breast and ovarian cancers. In addition, misregulation and altered expressions of BRCA1/2 proteins potentiate sporadic forms of breast cancer. In particular, both genes contribute to DNA repair and transcriptional regulation in response to DNA damage. Thus, deficiencies of BRCA1/2 functions lead to the accumulation of genetic alterations and ultimately influence the development of cancer. Studies since identification of both BRCA1 and BRCA2 have provided strong evidences for their tumor suppressor activities specifically for breast and ovarian cancer and this article aims to review the current state of knowledge regarding the BRCAs and associated cancer risk.


Molecular and Cellular Biology | 2013

EED and KDM6B coordinate the first mammalian cell lineage commitment to ensure embryo implantation.

Biswarup Saha; Pratik Home; Soma Ray; Melissa Larson; Arindam Paul; Ganeshkumar Rajendran; B. Behr; Soumen Paul

ABSTRACT The first mammalian cell lineage commitment is the formation of the trophectoderm (TE) and the inner cell mass (ICM) lineages during preimplantation development. Proper development of the TE and ICM lineages is dependent upon establishment of specific transcriptional programs. However, the epigenetic mechanisms that functionally contribute to establish TE- and ICM-specific transcriptional programs are poorly understood. Here, we show that proper development of the TE and ICM lineages is coordinated via combinatorial regulation of embryonic ectoderm development (EED) and lysine-specific demethylase 6B (KDM6B). During blastocyst formation, the relative levels of EED and KDM6B expression determine altered polycomb repressor 2 (PRC2) complex recruitment and incorporation of the repressive histone H3 lysine 27 trimethylation (H3K27Me3) mark at the chromatin domains of TE-specific master regulators CDX2 and GATA3, leading to their activation in the TE lineage and repression in the ICM lineage. Furthermore, ectopic gain of EED along with depletion of KDM6B in preimplantation mouse embryos abrogates CDX2 and GATA3 expression in the nascent TE lineage. The loss of CDX2 and GATA3 in the nascent TE lineage results in improper TE development, leading to failure in embryo implantation to the uterus. Our study delineates a novel epigenetic mechanism that orchestrates proper development of the first mammalian cell lineages.


Journal of Biological Chemistry | 2013

Inhibition of Protein Kinase C Signaling Maintains Rat Embryonic Stem Cell Pluripotency

Ganeshkumar Rajendran; Debasree Dutta; James Hong; Arindam Paul; Biswarup Saha; Biraj Mahato; Soma Ray; Pratik Home; Avishek Ganguly; Mark L. Weiss; Soumen Paul

Background: Signaling mechanisms regulating rat embryonic stem cell (rESC) pluripotency are understood poorly. Results: Inhibition of PKC signaling promotes rESC self-renewal without compromising developmental potency. Conclusion: PKC signaling contributes to the balance of self-renewal versus differentiation of rESCs. Significance: PKC signaling could be targeted to derive rat pluripotent stem cells to establish transgenic models and for regenerative studies. Embryonic stem cell (ESC) pluripotency is orchestrated by distinct signaling pathways that are often targeted to maintain ESC self-renewal or their differentiation to other lineages. We showed earlier that inhibition of PKC signaling maintains pluripotency in mouse ESCs. Therefore, in this study, we investigated the importance of protein kinase C signaling in the context of rat ESC (rESC) pluripotency. Here we show that inhibition of PKC signaling is an efficient strategy to establish and maintain pluripotent rESCs and to facilitate reprogramming of rat embryonic fibroblasts to rat induced pluripotent stem cells. The complete developmental potential of rESCs was confirmed with viable chimeras and germ line transmission. Our molecular analyses indicated that inhibition of a PKCζ-NF-κB-microRNA-21/microRNA-29 regulatory axis contributes to the maintenance of rESC self-renewal. In addition, PKC inhibition maintains ESC-specific epigenetic modifications at the chromatin domains of pluripotency genes and, thereby, maintains their expression. Our results indicate a conserved function of PKC signaling in balancing self-renewal versus differentiation of both mouse and rat ESCs and indicate that targeting PKC signaling might be an efficient strategy to establish ESCs from other mammalian species.


Cell Death & Differentiation | 2014

PKCλ/ι signaling promotes triple-negative breast cancer growth and metastasis

Arindam Paul; Sumedha Gunewardena; S R Stecklein; Biswarup Saha; N Parelkar; Marsha Danley; Ganeshkumar Rajendran; Pratik Home; Soma Ray; I Jokar; George Vielhauer; R A Jensen; Ossama Tawfik; Soumen Paul

Triple-negative breast cancer (TNBC) is a distinct breast cancer subtype defined by the absence of estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2/neu), and the patients with TNBC are often diagnosed with higher rates of recurrence and metastasis. Because of the absence of ER, PR and HER2/neu expressions, TNBC patients are insensitive to HER2-directed and endocrine therapies available for breast cancer treatment. Here, we report that expression of atypical protein kinase C isoform, PKCλ/ι, significantly increased and activated in all invasive breast cancer (invasive ductal carcinoma or IDC) subtypes including the TNBC subtype. Because of the lack of targeted therapies for TNBC, we choose to study PKCλ/ι signaling as a potential therapeutic target for TNBC. Our observations indicated that PKCλ/ι signaling is highly active during breast cancer invasive progression, and metastatic breast cancers, the advanced stages of breast cancer disease that developed more frequently in TNBC patients, are also characterized with high levels of PKCλ/ι expression and activation. Functional analysis in experimental mouse models revealed that depletion of PKCλ/ι significantly reduces TNBC growth as well as lung metastatic colonization. Furthermore, we have identified a PKCλ/ι-regulated gene signature consisting of 110 genes, which are significantly associated with indolent to invasive progression of human breast cancer and poor prognosis. Mechanistically, cytokines such as TGFβ and IL1β could activate PKCλ/ι signaling in TNBC cells and depletion of PKCλ/ι impairs NF-κB p65 (RelA) nuclear localization. We observed that cytokine-PKCλ/ι-RelA signaling axis, at least in part, involved in modulating gene expression to regulate invasion of TNBC cells. Overall, our results indicate that induction and activation of PKCλ/ι promote TNBC growth, invasion and metastasis. Thus, targeting PKCλ/ι signaling could be a therapeutic option for breast cancer, including the TNBC subtype.


Development | 2017

Genetic redundancy of GATA factors in the extraembryonic trophoblast lineage ensures the progression of preimplantation and postimplantation mammalian development

Pratik Home; Ram Parikshan Kumar; Avishek Ganguly; Biswarup Saha; Jessica Milano-Foster; Bhaswati Bhattacharya; Soma Ray; Sumedha Gunewardena; Arindam Paul; Sally A. Camper; Patrick E. Fields; Soumen Paul

GATA transcription factors are implicated in establishing cell fate during mammalian development. In early mammalian embryos, GATA3 is selectively expressed in the extraembryonic trophoblast lineage and regulates gene expression to promote trophoblast fate. However, trophoblast-specific GATA3 function is dispensable for early mammalian development. Here, using dual conditional knockout mice, we show that genetic redundancy of Gata3 with paralog Gata2 in trophoblast progenitors ensures the successful progression of both pre- and postimplantation mammalian development. Stage-specific gene deletion in trophoblasts reveals that loss of both GATA genes, but not either alone, leads to embryonic lethality prior to the onset of their expression within the embryo proper. Using ChIP-seq and RNA-seq analyses, we define the global targets of GATA2/GATA3 and show that they directly regulate a large number of common genes to orchestrate stem versus differentiated trophoblast fate. In trophoblast progenitors, GATA factors directly regulate BMP4, Nodal and Wnt signaling components that promote embryonic-extraembryonic signaling cross-talk, which is essential for the development of the embryo proper. Our study provides genetic evidence that impairment of trophoblast-specific GATA2/GATA3 function could lead to early pregnancy failure. Summary: During trophoblast development in mice, GATA2 and GATA3 act synergistically by directly regulating a large number of common genes, and together are important to ensure trophoblast lineage progression.


Stem Cells | 2014

Regulation of mitochondrial function and cellular energy metabolism by protein kinase C-λ/ι: a novel mode of balancing pluripotency.

Biraj Mahato; Pratik Home; Ganeshkumar Rajendran; Arindam Paul; Biswarup Saha; Avishek Ganguly; Soma Ray; Nairita Roy; Russell H. Swerdlow; Soumen Paul

Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis are key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self‐renewing versus differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization, and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι‐hypoxia‐inducible factor 1α‐PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. Stem Cells 2014;32:2880–2892


Scientific Reports | 2015

PKCζ Promotes Breast Cancer Invasion by Regulating Expression of E-cadherin and Zonula Occludens-1 (ZO-1) via NFκB-p65.

Arindam Paul; Marsha Danley; Biswarup Saha; Ossama Tawfik; Soumen Paul

Atypical Protein Kinase C zeta (PKCζ) forms Partitioning-defective (PAR) polarity complex for apico-basal distribution of membrane proteins essential to maintain normal cellular junctional complexes and tissue homeostasis. Consistently, tumor suppressive role of PKCζ has been established for multiple human cancers. However, recent studies also indicate pro-oncogenic function of PKCζ without firm understanding of detailed molecular mechanism. Here we report a possible mechanism of oncogenic PKCζ signaling in the context of breast cancer. We observed that depletion of PKCζ promotes epithelial morphology in mesenchymal-like MDA-MB-231 cells. The induction of epithelial morphology is associated with significant upregulation of adherens junction (AJ) protein E-cadherin and tight junction (TJ) protein Zonula Occludens-1 (ZO-1). Functionally, depletion of PKCζ significantly inhibits invasion and metastatic progression. Consistently, we observed higher expression and activation of PKCζ signaling in invasive and metastatic breast cancers compared to non-invasive diseases. Mechanistically, an oncogenic PKCζ– NFκB-p65 signaling node might be involved to suppress E-cadherin and ZO-1 expression and ectopic expression of a constitutively active form of NFκB-p65 (S536E-NFκB-p65) significantly rescues invasive potential of PKCζ-depleted breast cancer cells. Thus, our study discovered a PKCζ - NFκB-p65 signaling pathway might be involved to alter cellular junctional dynamics for breast cancer invasive progression.


Development | 2018

Regulation of energy metabolism during early mammalian development: TEAD4 controls mitochondrial transcription

Ram Parikshan Kumar; Soma Ray; Pratik Home; Biswarup Saha; Bhaswati Bhattacharya; Heather M. Wilkins; Hemantkumar Chavan; Avishek Ganguly; Jessica Milano-Foster; Arindam Paul; Partha Krishnamurthy; Russell H. Swerdlow; Soumen Paul

ABSTRACT Early mammalian development is crucially dependent on the establishment of oxidative energy metabolism within the trophectoderm (TE) lineage. Unlike the inner cell mass, TE cells enhance ATP production via mitochondrial oxidative phosphorylation (OXPHOS) and this metabolic preference is essential for blastocyst maturation. However, molecular mechanisms that regulate establishment of oxidative energy metabolism in TE cells are incompletely understood. Here, we show that conserved transcription factor TEAD4, which is essential for pre-implantation mammalian development, regulates this process by promoting mitochondrial transcription. In developing mouse TE and TE-derived trophoblast stem cells (TSCs), TEAD4 localizes to mitochondria, binds to mitochondrial DNA (mtDNA) and facilitates its transcription by recruiting mitochondrial RNA polymerase (POLRMT). Loss of TEAD4 impairs recruitment of POLRMT, resulting in reduced expression of mtDNA-encoded electron transport chain components, thereby inhibiting oxidative energy metabolism. Our studies identify a novel TEAD4-dependent molecular mechanism that regulates energy metabolism in the TE lineage to ensure mammalian development. Highlighted Article: The transcription factor TEAD4 promotes mtDNA transcription and oxidative energy metabolism in the trophectoderm lineage to ensure early mammalian development.


Molecular and Cellular Oncology | 2015

PKCλ/ι signaling-a common node for normal cellular development and breast oncogenesis.

Arindam Paul; Soumen Paul

We recently demonstrated that PKCλ/ι signaling is an important contributor to breast cancer development. Strikingly, PKCλ/ι signaling is also important to balance self-renewal versus differentiation in pluripotent stem cells and is essential for embryonic development. This commentary highlights some key functions of PKCλ/ι signaling that are integral to both normal development and cancer progression.


Archive | 2013

Breast Cancer Invasion and Metastasis

Shane R. Stecklein; Hanan Elsarraj; Kelli E. Valdez; Arindam Paul; Fariba Behbod

Breast cancer is the most common malignancy among western women, and 10–15 % of all breast cancer patients develop and ultimately succumb to metastatic disease. In breast cancer, malignant cells disseminate through lymphatic or hematogenous routes to distant organs. Over the last decades, the 5-year survival of breast cancer has increased due to early screening and advanced local and systemic treatments. Understanding the fundamental biology underlying the progression of breast cancer has fostered the identification and development of therapeutics. In this chapter, we discuss the morphologic and molecular heterogeneity of breast cancer and the relationship between breast cancer subtype and metastatic potential. Moreover, we detail different in vitro assays which provide simple and robust systems to study basic cellular processes that are critical to orchestrating metastatic progression of breast cancer. Lastly, we address the strengths and shortcomings of different in vivo models that allow integrated analysis of heterotypic signaling and tissue architecture in breast cancer progression.

Collaboration


Dive into the Arindam Paul's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soma Ray

University of Kansas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge