Ario de Marco
University of Nova Gorica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ario de Marco.
Microbial Cell Factories | 2009
Ario de Marco
Bacteria are simple and cost effective hosts for producing recombinant proteins. However, their physiological features may limit their use for obtaining in native form proteins of some specific structural classes, such as for instance polypeptides that undergo extensive post-translational modifications. To some extent, also the production of proteins that depending on disulfide bridges for their stability has been considered difficult in E. coli.Both eukaryotic and prokaryotic organisms keep their cytoplasm reduced and, consequently, disulfide bond formation is impaired in this subcellular compartment. Disulfide bridges can stabilize protein structure and are often present in high abundance in secreted proteins. In eukaryotic cells such bonds are formed in the oxidizing environment of endoplasmic reticulum during the export process. Bacteria do not possess a similar specialized subcellular compartment, but they have both export systems and enzymatic activities aimed at the formation and at the quality control of disulfide bonds in the oxidizing periplasm.This article reviews the available strategies for exploiting the physiological mechanisms of bactera to produce properly folded disulfide-bonded proteins.Bacteria are simple and cost effective hosts for producing recombinant proteins. However, their physiological features may limit their use for obtaining in native form proteins of some specific structural classes, such as for instance polypeptides that undergo extensive post-translational modifications. To some extent, also the production of proteins that depending on disulfide bridges for their stability has been considered difficult in E. coli. Both eukaryotic and prokaryotic organisms keep their cytoplasm reduced and, consequently, disulfide bond formation is impaired in this subcellular compartment. Disulfide bridges can stabilize protein structure and are often present in high abundance in secreted proteins. In eukaryotic cells such bonds are formed in the oxidizing environment of endoplasmic reticulum during the export process. Bacteria do not possess a similar specialized subcellular compartment, but they have both export systems and enzymatic activities aimed at the formation and at the quality control of disulfide bonds in the oxidizing periplasm. This article reviews the available strategies for exploiting the physiological mechanisms of bactera to produce properly folded disulfide-bonded proteins.
BMC Biotechnology | 2007
Ario de Marco; Elke Deuerling; Axel Mogk; Toshifumi Tomoyasu; Bernd Bukau
BackgroundThe overproduction of recombinant proteins in host cells often leads to their misfolding and aggregation. Previous attempts to increase the solubility of recombinant proteins by co-overproduction of individual chaperones were only partially successful. We now assessed the effects of combined overproduction of the functionally cooperating chaperone network of the E. coli cytosol on the solubility of recombinant proteins.ResultsA two-step procedure was found to show the strongest enhancement of solubility. In a first step, the four chaperone systems GroEL/GroES, DnaK/DnaJ/GrpE, ClpB and the small HSPs IbpA/IbpB, were coordinately co-overproduced with recombinant proteins to optimize de novo folding. In a second step, protein biosynthesis was inhibited to permit chaperone mediated refolding of misfolded and aggregated proteins in vivo. This novel strategy increased the solubility of 70% of 64 different heterologous proteins tested up to 42-fold.ConclusionThe engineered E. coli strains and the two-step procedure presented here led to a remarkable increase in the solubility of a various recombinant proteins and should be applicable to a wide range of target proteins produced in biotechnology.
Nature Structural & Molecular Biology | 2012
Valentina Migliori; Julius Muller; Sameer Phalke; Diana Low; Marco Bezzi; Wei Chuen Mok; Sanjeeb Kumar Sahu; Jayantha Gunaratne; Paola Capasso; Christian Bassi; Valentina Cecatiello; Ario de Marco; Walter Blackstock; Vladimir A. Kuznetsov; Bruno Amati; Marina Mapelli; Ernesto Guccione
The asymmetric dimethylation of histone H3 arginine 2 (H3R2me2a) acts as a repressive mark that antagonizes trimethylation of H3 lysine 4. Here we report that H3R2 is also symmetrically dimethylated (H3R2me2s) by PRMT5 and PRMT7 and present in euchromatic regions. Profiling of H3-tail interactors by SILAC MS revealed that H3R2me2s excludes binding of RBBP7, a central component of co-repressor complexes Sin3a, NURD and PRC2. Conversely H3R2me2s enhances binding of WDR5, a common component of the coactivator complexes MLL, SET1A, SET1B, NLS1 and ATAC. The interaction of histone H3 with WDR5 distinguishes H3R2me2s from H3R2me2a, which impedes the recruitment of WDR5 to chromatin. The crystallographic structure of WDR5 and the H3R2me2s peptide elucidates the molecular determinants of this high affinity interaction. Our findings identify H3R2me2s as a previously unknown mark that keeps genes poised in euchromatin for transcriptional activation upon cell-cycle withdrawal and differentiation in human cells.
Microbial Cell Factories | 2011
Ario de Marco
BackgroundSingle-domain antibody fragments possess structural features, such as a small dimension, an elevated stability, and the singularity of recognizing epitopes non-accessible for conventional antibodies that make them interesting for several research and biotechnological applications.ResultsThe discovery of the single-domain antibodys potentials has stimulated their use in an increasing variety of fields. The rapid accumulation of articles describing new applications and further developments of established approaches has made it, therefore, necessary to update the previous reviews with a new and more complete summary of the topic.ConclusionsBeside the necessary task of updating, this work analyses in detail some applicative aspects of the single-domain antibodies that have been overseen in the past, such as their efficacy in affinity chromatography, as co-crystallization chaperones, protein aggregation controllers, enzyme activity tuners, and the specificities of the unconventional single-domain fragments.Background Single-domain antibody fragments possess structural features, such as a small dimension, an elevated stability, and the singularity of recognizing epitopes non-accessible for conventional antibodies that make them interesting for several research and biotechnological applications.
BMC Biochemistry | 2005
Andrea Schrödel; Ario de Marco
BackgroundThe first aim of the work was to analyze in detail the complexity of the aggregates formed upon overexpression of recombinant proteins in E. coli. A sucrose step gradient succeeded in separating aggregate subclasses of a GFP-GST fusion protein with specific biochemical and biophysical features, providing a novel approach for studying recombinant protein aggregates.ResultsThe total lysate separated into 4 different fractions whereas only the one with the lowest density was detected when the supernatant recovered after ultracentrifugation was loaded onto the sucrose gradient. The three further aggregate sub-classes were otherwise indistinctly precipitated in the pellet. The distribution of the recombinant protein among the four subclasses was strongly dependent on the DnaK availability, with larger aggregates formed in Dnak- mutants. The aggregation state of the GFP-GST recovered from each of the four fractions was further characterized by examining three independent biochemical parameters. All of them showed an increased complexity of the recombinant protein aggregates starting from the top of the sucrose gradient (lower mass aggregates) to the bottom (larger mass aggregates). These results were also confirmed by electron microscopy analysis of the macro-structure formed by the different aggregates. Large fibrils were rapidly assembled when the recombinant protein was incubated in the presence of cellular extracts, but the GFP-GST fusion purified soon after lysis failed to undergo amyloidation, indicating that other cell components probably participate in the active formation of large aggregates. Finally, we showed that aggregates of lower complexity are more efficiently disaggregated by a combination of molecular chaperones.ConclusionAn additional analytical tool is now available to investigate the aggregation process and separate subclasses by their mass. It was possible to demonstrate the complexity of the aggregation pattern of a recombinant protein expressed in bacteria and to characterize biochemically the different aggregate subclasses. Furthermore, we have obtained evidence that the cellular environment plays a role in the development of the aggregates and the problem of the artifact generation of aggregates has been discussed using in vitro models. Finally, the possibility of separating aggregate fractions with different complexities offers new options for biotechnological strategies aimed at improving the yield of folded and active recombinant proteins.
Microbial Cell Factories | 2005
Annett Dümmler; Ann-Marie Lawrence; Ario de Marco
BackgroundThe solubility of recombinant proteins expressed in bacteria is often disappointingly low. Several strategies have been developed to improve the yield and one of the most common strategies is the fusion of the target protein with a suitable partner. Despite several reports on the successful use of each of these carriers to increase the solubility of some recombinant proteins, none of them was always successful and a combinatorial approach seems more efficient to identify the optimal combination for a specific protein. Therefore, the efficiency of an expression system critically depends on the speed in the identification of the optimal combination for the suitable fusion candidate in a screening process. This paper describes a set of expression vectors (pETM) designed for rapid subcloning, expression and subsequent purification using immobilized metal affinity chromatography (IMAC).ResultsA single PCR product of two Yellow Fluorescent Proteins (EYFPs) was cloned into 18 vectors comprising identical restriction sites and varying fusion partners as well as differing protease recognition sites. After a small-scale expression, the yields of the different constructs were compared using a Coomassie stained SDS-polyacrylamide gel and the results of this preliminary screening were then confirmed by large-scale purification. The yields were calculated and the stability of the different constructs determined using three independent conditions. The results indicated a significant correlation between the length and composition of non-native amino acid tails and stability. Furthermore, the buffer specificity of TEV and 3C proteases was tested using fusion proteins differing only in their protease recognition sequence, and a His-GST-EYFP construct was employed to compare the efficiency of the two alternative affinity purification methods.ConclusionThe experiments showed that the set of pETM vectors could be used for the rapid production of a large array of different constructs with specific yield, stability, and cleavage features. Their comparison allowed the identification of the optimal constructs to use for the large-scale expression. We expect that the approach outlined in this paper, i.e. the possibility to obtain in parallel fusion products of the target protein with different partners for a preliminary evaluation, would be highly beneficial for all them who are interested in the rapid identification of the optimal conditions for protein expression.
Nature Protocols | 2007
Ario de Marco
Eight combinations of molecular chaperones (e.g., DnaK/DnaJ/GrpE/ClpB) are co-expressed with the target recombinant protein to compare their effectiveness in improving its soluble yield. This system allows the most complete and rational approach proposed so far to use the chaperone activity for optimizing the host cell folding machinery. Furthermore, a two-step protocol is presented, in which protein synthesis and protein refolding are uncoupled. Molecular chaperones and target protein accumulate in the first growth phase and target protein aggregates are then disaggregated in vivo after the block of protein synthesis. The optimal chaperone combination to maximize the soluble yield of a specific protein remains unpredictable. Therefore, a small-scale purification selection step is useful for screening among expression combinations before scaling-up production. Applying such a strategy, we could increase the solubility of 70% of the tested constructs with yields of up to 42-fold more protein than in controls. The procedure takes 2 d.
Protein Engineering Design & Selection | 2009
Ana Monegal; Diletta Ami; Chiara Martinelli; He Huang; Marisa Aliprandi; Paola Capasso; Chiara Francavilla; Giuseppe Ossolengo; Ario de Marco
We describe the rapid isolation of single-domain recombinant antibodies in VHH format from a pre-immune llama library created in our laboratory. Such naïve library has demonstrated to be a versatile tool and enabled the isolation of several different antibodies for any of the six proteins panned in parallel. The binders specific for human fibroblast growth factor receptor 1 (FGFR1) were successively analyzed in more detail and resulted suitable for both western blot and immunofluorescence analyses. Several milligrams per liter of antibodies were purified by affinity chromatography and used for kinetic and thermodynamic characterization. Their K(D) was in the nanomolar range and they apparently bound a FGF receptor 1 domain not overlapping the region recognized by its physiological ligand FGF. Altogether, the collected data indicate that the new library can enable the recovery of binders of high affinity, specificity and functionality in the conventional immunological tests, avoiding the necessity of further maturation steps. Such results confirmed recent reports of high affinity pre-immune IgNARs and supported the choice of using large single-domain recombinant antibody naïve libraries as an alternative to the preparation of immune libraries for selecting monoclonal antibodies, at convenient cost and time conditions.
Journal of Cell Biology | 2009
Chiara Francavilla; Paola Cattaneo; Vladimir Berezin; Elisabeth Bock; Diletta Ami; Ario de Marco; Gerhard Christofori; Ugo Cavallaro
Although FGF-2 causes the FGFR to be internalized and degraded, NCAM gets cells moving by stabilizing the receptor, promoting receptor recycling, and initiating a promigratory signaling cascade.
BMC Biotechnology | 2007
Aurélien Olichon; Daniel Schweizer; Serge Muyldermans; Ario de Marco
BackgroundRecombinant antibodies from Camelidae (VHHs) are potentially useful tools for both basic research and biotechnological applications because of their small size, robustness, easy handling and possibility to refold after chemio-physical denaturation. Their heat tolerance is a particularly interesting feature because it has been recently related to both high yields during recombinant expression and selective purification of folded protein.ResultsPurification of recombinant RE3 VHH by heat treatment yielded the same amount of antibody as purification by affinity chromatography and negligible differences were found in stability, secondary structure and functionality. Similar results were obtained using another class of thermotolerant proteins, the single domain VH scaffold, described by Jespers et al. [8]. However, thermosensitive VHs could not withstand the heat treatment and co-precipitated with the bacterial proteins. In both cases, the thermotolerant proteins unfolded during the treatment but promptly refolded when moved back to a compatible temperature.ConclusionHeat treatment can simplify the purification protocol of thermotolerant proteins as well as remove any soluble aggregate. Since the re-folding capability after heat-induced denaturation was previously correlated to higher performance during recombinant expression, a unique heating step can be envisaged to screen constructs that can provide high yields of correctly-folded proteins.