Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aristeidis Kritis is active.

Publication


Featured researches published by Aristeidis Kritis.


Frontiers in Cellular Neuroscience | 2015

Researching glutamate – induced cytotoxicity in different cell lines: a comparative/collective analysis/study

Aristeidis Kritis; Eleni Stamoula; Krystallenia A. Paniskaki; Theofanis Vavilis

Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed.


Stem Cells and Development | 2015

Angiogenic Potential and Secretome of Human Apical Papilla Mesenchymal Stem Cells in Various Stress Microenvironments.

Athina Bakopoulou; Aristeidis Kritis; Dimitrios Andreadis; Eleni Papachristou; Gabriele Leyhausen; Petros Koidis; Werner Geurtsen; Asterios S. Tsiftsoglou

Stem cells from the apical papilla (SCAP) of human adult teeth are considered an accessible source of cells with angiogenic properties. The aims of this study were to investigate the endothelial transdifferentiation of SCAP, the secretion of pro- and antiangiogenic factors from SCAP, and the paracrine effects of SCAP when exposed to environmental stress to stimulate tissue damage. SCAP were exposed to serum deprivation (SD), glucose deprivation (GD), and oxygen deprivation/hypoxia (OD) conditions, individually or in combination. Endothelial transdifferentiation was evaluated by in vitro capillary-like formation assays, real-time polymerase chain reaction, western blot, and flow cytometric analyses of angiogenesis-related markers; secretome by antibody arrays and enzyme-linked immunosorbent assays (ELISA); and paracrine impact on human umbilical vein endothelial cells (HUVECs) by in vitro transwell migration and capillary-like formation assays. The short-term exposure of SCAP to glucose/oxygen deprivation (GOD) in the presence, but mainly in deprivation, of serum (SGOD) elicited a proangiogenesis effect indicated by expression of angiogenesis-related genes involved in vascular endothelial growth factor (VEGF)/VEGFR and angiopoietins/Tie pathways. This effect was unachievable under SD in normoxia, suggesting that the critical microenvironmental condition inducing rapid endothelial shift of SCAP is the combination of SGOD. Interestingly, SCAP showed high adaptability to these adverse conditions, retaining cell viability and acquiring a capillary-forming phenotype. SCAP secreted higher numbers and amounts of pro- (angiogenin, IGFBP-3, VEGF) and lower amounts of antiangiogenic factors (serpin-E1, TIMP-1, TSP-1) under SGOD compared with SOD or SD alone. Finally, secretome obtained under SGOD was most effective in inducing migration and capillary-like formation by HUVECs. These data provide new evidence on the microenvironmental factors favoring endothelial transdifferentiation of SCAP, uncovering the molecular mechanisms regulating their fate. They also validate the angiogenic properties of their secretome giving insights into preconditioning strategies enhancing their therapeutic potential.


Stem Cell Research & Therapy | 2017

Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties

Athina Bakopoulou; Danae Apatzidou; Eleni Aggelidou; Evangelia Gousopoulou; Gabriele Leyhausen; Joachim Volk; Aristeidis Kritis; Petros Koidis; Werner Geurtsen

BackgroundDevelopment of clinical-grade cell preparations is central to meeting the regulatory requirements for cellular therapies under good manufacturing practice-compliant (cGMP) conditions. Since addition of animal serum in culture media may compromise safe and efficient expansion of mesenchymal stem cells (MSCs) for clinical use, this study aimed to investigate the potential of two serum/xeno-free, cGMP culture systems to maintain long-term “stemness” of oral MSCs (dental pulp stem cells (DPSCs) and alveolar bone marrow MSCs (aBMMSCs)), compared to conventional serum-based expansion.MethodsDPSC and aBMMSC cultures (n = 6/cell type) were established from pulp and alveolar osseous biopsies respectively. Three culture systems were used: StemPro_MSC/SFM_XenoFree (Life Technologies); StemMacs_MSC/XF (Miltenyi Biotek); and α-MEM (Life Technologies) with 15% fetal bovine serum. Growth (population doublings (PDs)), immunophenotypic (flow cytometric analysis of MSC markers) and senescence (β-galactosidase (SA-β-gal) activity; telomere length) characteristics were determined during prolonged expansion. Gene expression patterns of osteogenic (ALP, BMP-2), adipogenic (LPL, PPAR-γ) and chondrogenic (ACAN, SOX-9) markers and maintenance of multilineage differentiation potential were determined by real-time PCR.ResultsSimilar isolation efficiency and stable growth dynamics up to passage 10 were observed for DPSCs under all expansion conditions. aBMMSCs showed lower cumulative PDs compared to DPSCs, and when StemMacs was used substantial delays in cell proliferation were noted after passages 6–7. Serum/xeno-free expansion produced cultures with homogeneous spindle-shaped phenotypes, while serum-based expansion preserved differential heterogeneous characteristics of each MSC population. Prolonged expansion of both MSC types but in particular the serum/xeno-free-expanded aBMMSCs was associated with downregulation of CD146, CD105, Stro-1, SSEA-1 and SSEA-4, but not CD90, CD73 and CD49f, in parallel with an increase of SA-gal-positive cells, cell size and granularity and a decrease in telomere length. Expansion under both serum-free systems resulted in “osteogenic pre-disposition”, evidenced by upregulation of osteogenic markers and elimination of chondrogenic and adipogenic markers, while serum-based expansion produced only minor changes. DPSCs retained a diminishing (CCM, StemPro) or increasing (StemMacs) mineralization potential with passaging, while aBMMSCs lost this potential after passages 6–7 under all expansion conditions.ConclusionsThese findings indicate there is still a vacant role for development of qualified protocols for clinical-grade expansion of oral MSCs; a key milestone achievement for translation of research from the bench to clinics.


Cellular and Molecular Neurobiology | 2016

Oxygen–Glucose Deprivation (OGD) Modulates the Unfolded Protein Response (UPR) and Inflicts Autophagy in a PC12 Hypoxia Cell Line Model

Theofanis Vavilis; Nikoleta Delivanoglou; Eleni Aggelidou; Eleni Stamoula; Kyriakos Mellidis; Aikaterini Kaidoglou; Angeliki Cheva; Chryssa Pourzitaki; Katerina Chatzimeletiou; Antigone Lazou; Maria Albani; Aristeidis Kritis

Hypoxia is the lack of sufficient oxygenation of tissue, imposing severe stress upon cells. It is a major feature of many pathological conditions such as stroke, traumatic brain injury, cerebral hemorrhage, perinatal asphyxia and can lead to cell death due to energy depletion and increased free radical generation. The present study investigates the effect of hypoxia on the unfolded protein response of the cell (UPR), utilizing a 16-h oxygen–glucose deprivation protocol (OGD) in a PC12 cell line model. Expression of glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94), key players of the UPR, was studied along with the expression of glucose-regulated protein 75 (GRP75), heat shock cognate 70 (HSC70), and glyceraldehyde 3-phosphate dehydrogenase, all with respect to the cell death mechanism(s). Cells subjected to OGD displayed upregulation of GRP78 and GRP94 and concurrent downregulation of GRP75. These findings were accompanied with minimal apoptotic cell death and induction of autophagy. The above observation warrants further investigation to elucidate whether autophagy acts as a pro-survival mechanism that upon severe and prolonged hypoxia acts as a concerted cell response leading to cell death. In our OGD model, hypoxia modulates UPR and induces autophagy.


Cellular Physiology and Biochemistry | 2015

Low dose administration of glutamate triggers a non-apoptotic, autophagic response in PC12 cells

Eleni Stamoula; Theofanis Vavilis; Eleni Aggelidou; Aikaterini Kaidoglou; Angeliki Cheva; Kyriakos Mellidis; Antigone Lazou; Costas Haitoglou; Maria Albani; Aristeidis Kritis

Background/Aims: Increasing amounts of the neurotransmitter glutamate are associated with excitotoxicity, a phenomenon related both to homeostatic processes and neurodegenerative diseases such as multiple sclerosis. Methods: PC12 cells (rat pheochromocytoma) were treated with various concentrations of the non-essential amino acid glutamate for 0.5-24 hours. The effect of glutamate on cell morphology was monitored with electron microscopy and haematoxylin-eosin staining. Cell survival was calculated with the MTT assay. Expression analysis of chaperones associated with the observed phenotype was performed using either Western Blotting at the protein level or qRT-PCR at the mRNA level. Results: Administration of glutamate in PC12 cells in doses as low as 10 μM causes an up-regulation of GRP78, GRP94 and HSC70 protein levels, while their mRNA levels show the opposite kinetics. At the same time, GAPDH and GRP75 show reduced protein levels, irrespective of their transcriptional rate. On a cellular level, low concentrations of glutamate induce an autophagy-mediated pro-survival phenotype, which is further supported by induction of the autophagic marker LC3. Conclusion: The findings in the present study underline a discrete effect of glutamate on neuronal cell fate depending on its concentration. It was also shown that a low dose of glutamate orchestrates a unique expression signature of various chaperones and induces cell autophagy, which acts in a neuroprotective fashion.


Nutrition and Cancer | 2018

Calpain-Dependent Death in C6 Rat Glioma Cells, Exhibiting a Synergistic Effect with Temozolomide

Dimitrios Giakoumettis; Chryssa Pourzitaki; Theofanis Vavilis; Anastasia Tsingotjidou; Anastasia Kyriakoudi; Maria Z. Tsimidou; Marina Boziki; Antonia Sioga; Nikolaos Foroglou; Aristeidis Kritis

Abstract Crocus sativus L., a dietary herb, has been used for various diseases including cancer. This is an in vitro study investigating the antineoplastic effect of the extract of the plant against C6 glioma rat cell line. The mechanism of cellular death and the synergistic effect of the extract with the alkylating agent temozolomide (TMZ) were investigated. Cellular viability was examined in various concentrations of the extract alone or in combination with TMZ. Apoptosis was determined with flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and autophagy by western blotting of the light chain 3 (LC3)-II. Cellular viability was reduced after exposure to the extract with half maximal inhibition concentration at 3 mg/ml. Flow cytometry and TUNEL assay suggested that the extract does not induce apoptosis. Moreover, their combination increased the ratio dead/apoptotic cells 10-fold (P < 0.001). LC3-II protein levels reduced after Crocus extract while this effect was reversed when the calpain inhibitor MDL28170 was added, suggesting a calpain-dependent death possibly through autophagy. We concluded that the extract of Crocus increases dead cell number after 48 h of exposure. Our results suggest that the cell undergoes calpain-dependent programmed cell death while co-exposure to Crocus extract and TMZ enhances the antineoplastic effect of the latter.


European Journal of Pharmacology | 2018

Fentanyl and naloxone effects on glutamate and GABA release rates from anterior hypothalamus in freely moving rats

Chryssa Pourzitaki; Georgia Tsaousi; Georgios Papazisis; Athanassios Kyrgidis; Constantinos Zacharis; Aristeidis Kritis; Faye Malliou; Dimitrios Kouvelas

Fentanyl, a μ-opioid receptor agonist, has been studied for its neuro/psycho-pharmacological effects since its first clinical use; however, its effect on the release rate of the Central Nervous System (CNS) neurotransmitters has not been yet elucidated. In the present study the influence of fentanyl on the release rates of glutamate and GABA is investigated. Specifically, we examined the effects of intravenous (10 μg/kg) as well as intrahypothalamic (0.1nmol/min) fentanyl administration on the release rates of GABA and glutamate in the superfusate of anterior hypothalamus, under tail pinch manipulation. The release rate of the neurotransmitters was monitored by the push–pull superfusion technique. To investigate the role of fentanyl the opioid antagonist, naloxone 0.1 mg/kg was administered intravenously, or 50nmol/min intrahypothalamicaly. The amino acids were determined by High Performance Liquid Chromatography (HPLC) and fluorimetric detection after NBD-Cl derivatisation. After intravenous fentanyl administration a significant decrease of glutamate and increase of GABA release rates were observed. However during the pain manipulations, the release rate of glutamate was increased. Intravenous naloxone did not affect significantly the release rates of both amino acids, while intrahypothalamic antagonist administration reversed the alterations in both neurotransmitters release rates. Our results demonstrate that there is an opioid-glutamatergic transmission pathway, located in hypothalamus and that opioids can activate NMDA receptors, thus reducing the nociceptive threshold and the opioid analgesicFentanyl, a μ-opioid receptor agonist, has been studied for its neuro/psycho-pharmacological effects since its first clinical use; however, its effect on the release rate of the Central Nervous System (CNS) neurotransmitters has not been yet elucidated. In the present study the influence of fentanyl on the release rates of glutamate and GABA is investigated. Specifically, we examined the effects of intravenous (10 μg/kg) as well as intrahypothalamic (0.1nmol/min) fentanyl administration on the release rates of GABA and glutamate in the superfusate of anterior hypothalamus, under tail pinch manipulation. The release rate of the neurotransmitters was monitored by the push-pull superfusion technique. To investigate the role of fentanyl the opioid antagonist, naloxone 0.1 mg/kg was administered intravenously, or 50nmol/min intrahypothalamicaly. The amino acids were determined by High Performance Liquid Chromatography (HPLC) and fluorimetric detection after NBD-Cl derivatisation. After intravenous fentanyl administration a significant decrease of glutamate and increase of GABA release rates were observed. However during the pain manipulations, the release rate of glutamate was increased. Intravenous naloxone did not affect significantly the release rates of both amino acids, while intrahypothalamic antagonist administration reversed the alterations in both neurotransmitters release rates. Our results demonstrate that there is an opioid-glutamatergic transmission pathway, located in hypothalamus and that opioids can activate NMDA receptors, thus reducing the nociceptive threshold and the opioid analgesic effect.


Hippokratia | 2010

Sciatic nerve crush evokes a biphasic TGF-beta and decorin modulation in the rat spinal cord.

Aristeidis Kritis; Dorothea Kapoukranidou; Michailidou B; Hatzisotiriou A; Maria Albani


/data/revues/07533322/unassign/S0753332218304293/ | 2018

On PC12 oxygen glucose deprivation and cell death

Theofanis Vavilis; Aristeidis Kritis


/data/revues/07533322/unassign/S0753332218304293/ | 2018

Iconography : On PC12 oxygen glucose deprivation and cell death

Theofanis Vavilis; Aristeidis Kritis

Collaboration


Dive into the Aristeidis Kritis's collaboration.

Top Co-Authors

Avatar

Theofanis Vavilis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Eleni Aggelidou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Athina Bakopoulou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Eleni Stamoula

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Maria Albani

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Petros Koidis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Chryssa Pourzitaki

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Aikaterini Kaidoglou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Angeliki Cheva

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Antigone Lazou

Aristotle University of Thessaloniki

View shared research outputs
Researchain Logo
Decentralizing Knowledge