Aristidis Likas
University of Ioannina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aristidis Likas.
Pattern Recognition | 2003
Aristidis Likas; Nikos A. Vlassis; Jakob J. Verbeek
We present the global k-means algorithm which is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure consisting of N (with N being the size of the data set) executions of the k-means algorithm from suitable initial positions. We also propose modifications of the method to reduce the computational load without significantly affecting solution quality. The proposed clustering methods are tested on well-known data sets and they compare favorably to the k-means algorithm with random restarts.
Neural Processing Letters | 2002
Nikos A. Vlassis; Aristidis Likas
Learning a Gaussian mixture with a local algorithm like EM can be difficult because (i) the true number of mixing components is usually unknown, (ii) there is no generally accepted method for parameter initialization, and (iii) the algorithm can get trapped in one of the many local maxima of the likelihood function. In this paper we propose a greedy algorithm for learning a Gaussian mixture which tries to overcome these limitations. In particular, starting with a single component and adding components sequentially until a maximum number k, the algorithm is capable of achieving solutions superior to EM with k components in terms of the likelihood of a test set. The algorithm is based on recent theoretical results on incremental mixture density estimation, and uses a combination of global and local search each time a new component is added to the mixture.
IEEE Transactions on Neural Networks | 1998
Isaac E. Lagaris; Aristidis Likas; Dimitrios I. Fotiadis
We present a method to solve initial and boundary value problems using artificial neural networks. A trial solution of the differential equation is written as a sum of two parts. The first part satisfies the initial/boundary conditions and contains no adjustable parameters. The second part is constructed so as not to affect the initial/boundary conditions. This part involves a feedforward neural network containing adjustable parameters (the weights). Hence by construction the initial/boundary conditions are satisfied and the network is trained to satisfy the differential equation. The applicability of this approach ranges from single ordinary differential equations (ODEs), to systems of coupled ODEs and also to partial differential equations (PDEs). In this article, we illustrate the method by solving a variety of model problems and present comparisons with solutions obtained using the Galekrkin finite element method for several cases of partial differential equations. With the advent of neuroprocessors and digital signal processors the method becomes particularly interesting due to the expected essential gains in the execution speed.
IEEE Transactions on Neural Networks | 2005
Konstantinos Blekas; Aristidis Likas; Nikolas P. Galatsanos; Isaac E. Lagaris
Gaussian mixture models (GMMs) constitute a well-known type of probabilistic neural networks. One of their many successful applications is in image segmentation, where spatially constrained mixture models have been trained using the expectation-maximization (EM) framework. In this letter, we elaborate on this method and propose a new methodology for the M-step of the EM algorithm that is based on a novel constrained optimization formulation. Numerical experiments using simulated images illustrate the superior performance of our method in terms of the attained maximum value of the objective function and segmentation accuracy compared to previous implementations of this approach.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2006
Constantinos Constantinopoulos; Michalis K. Titsias; Aristidis Likas
We present a Bayesian method for mixture model training that simultaneously treats the feature selection and the model selection problem. The method is based on the integration of a mixture model formulation that takes into account the saliency of the features and a Bayesian approach to mixture learning that can be used to estimate the number of mixture components. The proposed learning algorithm follows the variational framework and can simultaneously optimize over the number of components, the saliency of the features, and the parameters of the mixture model. Experimental results using high-dimensional artificial and real data illustrate the effectiveness of the method.
Artificial Intelligence in Medicine | 2005
Athanasios Papadopoulos; Dimitrios I. Fotiadis; Aristidis Likas
OBJECTIVE Detection and characterization of microcalcification clusters in mammograms is vital in daily clinical practice. The scope of this work is to present a novel computer-based automated method for the characterization of microcalcification clusters in digitized mammograms. METHODS AND MATERIAL The proposed method has been implemented in three stages: (a) the cluster detection stage to identify clusters of microcalcifications, (b) the feature extraction stage to compute the important features of each cluster and (c) the classification stage, which provides with the final characterization. In the classification stage, a rule-based system, an artificial neural network (ANN) and a support vector machine (SVM) have been implemented and evaluated using receiver operating characteristic (ROC) analysis. The proposed method was evaluated using the Nijmegen and Mammographic Image Analysis Society (MIAS) mammographic databases. The original feature set was enhanced by the addition of four rule-based features. RESULTS AND CONCLUSIONS In the case of Nijmegen dataset, the performance of the SVM was Az=0.79 and 0.77 for the original and enhanced feature set, respectively, while for the MIAS dataset the corresponding characterization scores were Az=0.81 and 0.80. Utilizing neural network classification methodology, the corresponding performance for the Nijmegen dataset was Az=0.70 and 0.76 while for the MIAS dataset it was Az=0.73 and 0.78. Although the obtained high classification performance can be successfully applied to microcalcification clusters characterization, further studies must be carried out for the clinical evaluation of the system using larger datasets. The use of additional features originating either from the image itself (such as cluster location and orientation) or from the patient data may further improve the diagnostic value of the system.
IEEE Transactions on Image Processing | 2007
Christophoros Nikou; Nikolaos P. Galatsanos; Aristidis Likas
We propose a new approach for image segmentation based on a hierarchical and spatially variant mixture model. According to this model, the pixel labels are random variables and a smoothness prior is imposed on them. The main novelty of this work is a new family of smoothness priors for the label probabilities in spatially variant mixture models. These Gauss-Markov random field-based priors allow all their parameters to be estimated in closed form via the maximum a posteriori (MAP) estimation using the expectation-maximization methodology. Thus, it is possible to introduce priors with multiple parameters that adapt to different aspects of the data. Numerical experiments are presented where the proposed MAP algorithms were tested in various image segmentation scenarios. These experiments demonstrate that the proposed segmentation scheme compares favorably to both standard and previous spatially constrained mixture model-based segmentation
IEEE Transactions on Multimedia | 2009
Vasileios Chasanis; Aristidis Likas; Nikolaos P. Galatsanos
Video indexing requires the efficient segmentation of video into scenes. The video is first segmented into shots and a set of key-frames is extracted for each shot. Typical scene detection algorithms incorporate time distance in a shot similarity metric. In the method we propose, to overcome the difficulty of having prior knowledge of the scene duration, the shots are clustered into groups based only on their visual similarity and a label is assigned to each shot according to the group that it belongs to. Then, a sequence alignment algorithm is applied to detect when the pattern of shot labels changes, providing the final scene segmentation result. In this way shot similarity is computed based only on visual features, while ordering of shots is taken into account during sequence alignment. To cluster the shots into groups we propose an improved spectral clustering method that both estimates the number of clusters and employs the fast global k-means algorithm in the clustering stage after the eigenvector computation of the similarity matrix. The same spectral clustering method is applied to extract the key-frames of each shot and numerical experiments indicate that the content of each shot is efficiently summarized using the method we propose herein. Experiments on TV-series and movies also indicate that the proposed scene detection method accurately detects most of the scene boundaries while preserving a good tradeoff between recall and precision.
IEEE Transactions on Neural Networks | 2009
Grigorios Tzortzis; Aristidis Likas
Kernel k-means is an extension of the standard k-means clustering algorithm that identifies nonlinearly separable clusters. In order to overcome the cluster initialization problem associated with this method, we propose the global kernel k-means algorithm, a deterministic and incremental approach to kernel-based clustering. Our method adds one cluster at each stage, through a global search procedure consisting of several executions of kernel k-means from suitable initializations. This algorithm does not depend on cluster initialization, identifies nonlinearly separable clusters, and, due to its incremental nature and search procedure, locates near-optimal solutions avoiding poor local minima. Furthermore, two modifications are developed to reduce the computational cost that do not significantly affect the solution quality. The proposed methods are extended to handle weighted data points, which enables their application to graph partitioning. We experiment with several data sets and the proposed approach compares favorably to kernel k-means with random restarts.
IEEE Transactions on Neural Networks | 2000
Isaac E. Lagaris; Aristidis Likas; Dimitrios G. Papageorgiou
Partial differential equations (PDEs) with boundary conditions (Dirichlet or Neumann) defined on boundaries with simple geometry have been successfully treated using sigmoidal multilayer perceptrons in previous works. This article deals with the case of complex boundary geometry, where the boundary is determined by a number of points that belong to it and are closely located, so as to offer a reasonable representation. Two networks are employed: a multilayer perceptron and a radial basis function network. The later is used to account for the exact satisfaction of the boundary conditions. The method has been successfully tested on two-dimensional and three-dimensional PDEs and has yielded accurate results.