Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aristidis Moustakas is active.

Publication


Featured researches published by Aristidis Moustakas.


Journal of Cell Science | 2005

Non-Smad TGF-β signals

Aristidis Moustakas; Carl-Henrik Heldin

During the past 10 years, it has been firmly established that Smad pathways are central mediators of signals from the receptors for transforming growth factor β (TGF-β) superfamily members to the nucleus. However, growing biochemical and developmental evidence supports the notion that alternative, non-Smad pathways also participate in TGF-β signalling. Non-Smad signalling proteins have three general mechanisms by which they contribute to physiological responses to TGF-β: (1) non-Smad signalling pathways directly modify (e.g. phosphorylate) the Smads and thus modulate the activity of the central effectors; (2) Smads directly interact and modulate the activity of other signalling proteins (e.g. kinases), thus transmitting signals to other pathways; and (3) the TGF-β receptors directly interact with or phosphorylate non-Smad proteins, thus initiating parallel signalling that cooperates with the Smad pathway in eliciting physiological responses. Thus, non-Smad signal transducers under the control of TGF-β provide quantitative regulation of the signalling pathway, and serve as nodes for crosstalk with other major signalling pathways, such as tyrosine kinase, G-protein-coupled or cytokine receptors.


Cancer Science | 2007

Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression

Aristidis Moustakas; Carl-Henrik Heldin

Epithelial–mesenchymal transition (EMT) describes the differentiation switch between polarized epithelial cells and contractile and motile mesenchymal cells, and facilitates cell movements and generation of new tissue types during embryogenesis. Many secreted polypeptides are implicated in the EMT process and their corresponding intracellular transduction pathways form highly interconnected networks. Transforming growth factor‐β, Wnt, Notch and growth factors acting through tyrosine kinase receptors induce EMT and often act in a sequential manner. Such growth factors orchestrate the concerted regulation of an elaborate gene program and a complex protein network, needed for establishment of new mesenchymal phenotypes after disassembly of the main elements of epithelial architecture, such as desmosomes, as well as tight, adherens and gap junctions. EMT of tumor cells occurs during cancer progression and possibly generates cell types of the tumor stroma, such as cancer‐associated myofibroblasts. EMT contributes to new tumor cell properties required for invasiveness and vascular intravasation during metastasis. Here we present some of the current mechanisms that mediate the process of EMT and discuss their relevance to cancer progression. (Cancer Sci 2007; 98: 1512–1520)


Development | 2009

The regulation of TGFβ signal transduction

Aristidis Moustakas; Carl-Henrik Heldin

Transforming growth factor β (TGFβ) pathways are implicated in metazoan development, adult homeostasis and disease. TGFβ ligands signal via receptor serine/threonine kinases that phosphorylate, and activate, intracellular Smad effectors as well as other signaling proteins. Oligomeric Smad complexes associate with chromatin and regulate transcription, defining the biological response of a cell to TGFβ family members. Signaling is modulated by negative-feedback regulation via inhibitory Smads. We review here the mechanisms of TGFβ signal transduction in metazoans and emphasize events crucial for embryonic development.


Current Opinion in Cell Biology | 2009

Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial–mesenchymal transition

Carl-Henrik Heldin; Maréne Landström; Aristidis Moustakas

Members of the transforming growth factor-beta (TGF-beta) family have important roles during embryogenesis, as well as in the control of tissue homeostasis in the adult. They exert their cellular effects via binding to serine/threonine kinase receptors. Members of the Smad family of transcription factors are important intracellular messengers, and recent studies have shown that the ubiquitin ligase TRAF6 mediates other specific signals. TGF-beta signaling is tightly controlled by post-translational modifications, which regulate the activity, stability, and subcellular localization of the signaling components. The aim of this review is to summarize some of the recent findings on the mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition.


Immunology Letters | 2002

Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation

Aristidis Moustakas; Katerina Pardali; Annamaria Gaal; Carl-Henrik Heldin

Transforming growth factor beta (TGF-beta) is a secreted protein that regulates proliferation, differentiation and death of various cell types. All immune cell lineages, including B, T and dendritic cells as well as macrophages, secrete TGF-beta, which negatively regulates their proliferation, differentiation and activation by other cytokines. Thus, TGF-beta is a potent immunosuppressor and perturbation of TGF-beta signaling is linked to autoimmunity, inflammation and cancer. Regulation of cell proliferation and differentiation by TGF-beta is a topic of great basic and clinical importance. We summarize our work on the growth inhibitory pathway downstream of TGF-beta, which is triggered by receptor serine/threonine kinases at the cell surface and downstream effectors of the Smad family. Activated Smads regulate transcription of target genes, including cell cycle inhibitors such as p21, which mediate the anti-proliferative response and partially explain the tumor suppressive action of the TGF-beta pathway. We have described a molecular mechanism of regulation of the p21 gene by Smads and transcription factor Sp1. At late stages of tumor progression, TGF-beta promotes tumorigenesis via suppression of the immune system and changes in cell differentiation of epithelial tumor cells, a phenomenon termed epithelial to mesenchymal transdifferentiation (EMT). We review our work on the role of the Smad pathway in controlling EMT. In conclusion, the molecular pathways that describe the anti-proliferative and transdifferentiating effects of TGF-beta in epithelial cells have been uncovered to great molecular detail; a future challenge will be to test their generality in other systems, including the immune system.


Nature Cell Biology | 2009

A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-β mediated epithelial-mesenchymal transition

Theresa Vincent; Etienne P. A. Neve; Jill R. Johnson; Alexander Kukalev; Federico Rojo; Joan Albanell; Kristian Pietras; Ismo Virtanen; Lennart Philipson; Philip L. Leopold; Ronald G. Crystal; Antonio García de Herreros; Aristidis Moustakas; Ralf F. Pettersson; Jonas Fuxe

Epithelial–mesenchymal transition (EMT) is essential for organogenesis and is triggered during carcinoma progression to an invasive state. Transforming growth factor-β (TGF-β) cooperates with signalling pathways, such as Ras and Wnt, to induce EMT, but the molecular mechanisms are not clear. Here, we report that SMAD3 and SMAD4 interact and form a complex with SNAIL1, a transcriptional repressor and promoter of EMT. The SNAIL1–SMAD3/4 complex was targeted to the gene promoters of CAR, a tight-junction protein, and E-cadherin during TGF-β-driven EMT in breast epithelial cells. SNAIL1 and SMAD3/4 acted as co-repressors of CAR, occludin, claudin-3 and E-cadherin promoters in transfected cells. Conversely, co-silencing of SNAIL1 and SMAD4 by siRNA inhibited repression of CAR and occludin during EMT. Moreover, loss of CAR and E-cadherin correlated with nuclear co-expression of SNAIL1 and SMAD3/4 in a mouse model of breast carcinoma and at the invasive fronts of human breast cancer. We propose that activation of a SNAIL1–SMAD3/4 transcriptional complex represents a mechanism of gene repression during EMT.


Journal of Biological Chemistry | 2000

Role of Smad Proteins and Transcription Factor Sp1 in p21Waf1/Cip1 Regulation by Transforming Growth Factor-β

Katerina Pardali; Akira Kurisaki; Anita Morén; Peter ten Dijke; Dimitris Kardassis; Aristidis Moustakas

Transforming growth factor-β (TGF-β) inhibits cell cycle progression, in part through up-regulation of gene expression of the p21WAF1/Cip1(p21) cell cycle inhibitor. Previously we have reported that the intracellular effectors of TGF-β, Smad3 and Smad4, functionally cooperate with Sp1 to activate the human p21 promoter in hepatoma HepG2 cells. In this study we show that Smad3 and Smad4 when overexpressed in HaCaT keratinocytes lead to activation of the p21 promoter. Activation requires the binding sites for the ubiquitous transcription factor Sp1 on the proximal promoter. Induction of the endogenous HaCaTp21 gene by TGF-β1 is further enhanced after overexpression of Smad3 and Smad4, whereas dominant negative mutants of Smad3 and Smad4 and the inhibitory Smad7 all inhibit p21induction by TGF-β1 in a dose-dependent manner. We show that Sp1 expressed in the Sp1-deficient Drosophila SL-2 cells binds to the proximal p21 promoter sequences, whereas Smad proteins do not. In support of this finding, we show that DNA-binding domain mutants of Smad3 and Smad4 are capable of transactivating the p21 promoter as efficiently as wild type Smads. Co-expression of Smad3 with Smad4 and Sp1 in SL-2 cells or co-incubation of phosphorylated Smad3, Smad4, and Sp1 in vitro results in enhanced binding of Sp1 to the p21 proximal promoter sequences. We demonstrate that Sp1 physically and directly interacts with Smad2, Smad3, and weakly with Smad4 via their amino-terminal (Mad-Homology 1) domain. Finally, by using GAL4 fusion proteins we show that the glutamine-rich sequences in the transactivation domain of Sp1 contribute to the cooperativity with Smad proteins. In conclusion, Smad proteins play important roles in regulation of the p21 gene by TGF-β, and the functional cooperation of Smad proteins with Sp1 involves the physical interaction of these two types of transcription factors.


Molecular and Cellular Biology | 2004

Id2 and Id3 Define the Potency of Cell Proliferation and Differentiation Responses to Transforming Growth Factor β and Bone Morphogenetic Protein

Marcin Kowanetz; Ulrich Valcourt; Rosita Bergström; Carl-Henrik Heldin; Aristidis Moustakas

ABSTRACT Transforming growth factors β (TGF-βs) inhibit growth of epithelial cells and induce differentiation changes, such as epithelial-mesenchymal transition (EMT). On the other hand, bone morphogenetic proteins (BMPs) weakly affect epithelial cell growth and do not induce EMT. Smad4 transmits signals from both TGF-β and BMP pathways. Stimulation of Smad4-deficient epithelial cells with TGF-β1 or BMP-7 in the absence or presence of exogenous Smad4, followed by cDNA microarray analysis, revealed 173 mostly Smad4-dependent, TGF-β-, or BMP-responsive genes. Among 25 genes coregulated by both factors, inhibitors of differentiation Id2 and Id3 showed long-term repression by TGF-β and sustained induction by BMP. The opposing regulation of Id genes is critical for proliferative and differentiation responses. Hence, ectopic Id2 or Id3 expression renders epithelial cells refractory to growth inhibition and EMT induced by TGF-β, phenocopying the BMP response. Knockdown of endogenous Id2 or Id3 sensitizes epithelial cells to BMP, leading to robust growth inhibition and induction of transdifferentiation. Thus, Id genes sense Smad signals and create a permissive or refractory nuclear environment that defines decisions of cell fate and proliferation.


Journal of Biological Chemistry | 2008

HMGA2 and Smads Co-regulate SNAIL1 Expression during Induction of Epithelial-to-Mesenchymal Transition

Sylvie Thuault; E-Jean Tan; Héctor Peinado; Amparo Cano; Carl-Henrik Heldin; Aristidis Moustakas

Epithelial-mesenchymal transition (EMT) is important during embryonic cell layer movement and tumor cell invasiveness. EMT converts adherent epithelial cells to motile mesenchymal cells, favoring metastasis in the context of cancer progression. Transforming growth factor-β (TGF-β) triggers EMT via intracellular Smad transducers and other signaling proteins. We previously reported that the high mobility group A2 (HMGA2) gene is required for TGF-β to elicit EMT in mammary epithelial cells. In the present study we investigated the molecular mechanisms by which HMGA2 induces EMT. We found that HMGA2 regulates expression of many important repressors of E-cadherin. Among these, we analyzed in detail the zinc-finger transcription factor SNAIL1, which plays key roles in tumor progression and EMT. We demonstrate that HMGA2 directly binds to the SNAIL1 promoter and acts as a transcriptional regulator of SNAIL1 expression. Furthermore, we observed that HMGA2 cooperates with the TGF-β/Smad pathway in regulating SNAIL1 gene expression. The mechanism behind this cooperation involves physical interaction between these factors, leading to an increased binding of Smads to the SNAIL1 promoter. SNAIL1 seems to play the role of a master effector downstream of HMGA2 for induction of EMT, as SNAIL1 knock-down partially reverts HMGA2-induced loss of epithelial differentiation. The data propose that HMGA2 acts in a gene-specific manner to orchestrate the transcriptional network necessary for the EMT program.


FEBS Letters | 2012

Regulation of EMT by TGFβ in cancer

Carl-Henrik Heldin; Michael Vanlandewijck; Aristidis Moustakas

Transforming growth factor‐β (TGFβ) suppresses tumor formation since it inhibits cell growth and promotes apoptosis. However, in advanced cancers TGFβ elicits tumor promoting effects through its ability to induce epithelial‐mesenchymal transition (EMT) which enhances invasiveness and metastasis; in addition, TGFβ exerts tumor promoting effects on non‐malignant cells of the tumor, including suppression of immune surveillance and stimulation of angiogenesis. TGFβ promotes EMT by transcriptional and posttranscriptional regulation of a group of transcription factors that suppresses epithelial features, such as expression of components of cell junctions and polarity complexes, and enhances mesenchymal features, such as production of matrix molecules and several cytokines and growth factors that stimulate cell migration. The EMT program has certain similarities with the stem cell program. Inducers and effectors of EMT are interesting targets for the development of improved diagnosis, prognosis and therapy of cancer.

Collaboration


Dive into the Aristidis Moustakas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita Morén

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Lönn

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Katerina Pardali

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Marcin Kowanetz

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Peter ten Dijke

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Ulrich Valcourt

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Varun Maturi

Ludwig Institute for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge