Aristomenis Thanos
Beaumont Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Aristomenis Thanos.
Proceedings of the National Academy of Sciences of the United States of America | 2010
George Trichonas; Yusuke Murakami; Aristomenis Thanos; Yuki Morizane; Maki Kayama; Christine M. Debouck; Toshio Hisatomi; Joan W. Miller; Demetrios G. Vavvas
Apoptosis has been shown to be a significant form of cell loss in many diseases. Detachment of photoreceptors from the retinal pigment epithelium, as seen in various retinal disorders, causes photoreceptor loss and subsequent vision decline. Although caspase-dependent apoptotic pathways are activated after retinal detachment, caspase inhibition by the pan-caspase inhibitor Z-VAD fails to prevent photoreceptor death; thus, we investigated other pathways leading to cell loss. Here, we show that receptor interacting protein (RIP) kinase-mediated necrosis is a significant mode of photoreceptor cell loss in an experimental model of retinal detachment and when caspases are inhibited, RIP-mediated necrosis becomes the predominant form of death. RIP3 expression, a key activator of RIP1 kinase, increased more than 10-fold after retinal detachment. Morphological assessment of detached retinas treated with Z-VAD showed decreased apoptosis but significantly increased necrotic photoreceptor death. RIP1 kinase inhibitor necrostatin-1 or Rip3 deficiency substantially prevented those necrotic changes and reduced oxidative stress and mitochondrial release of apoptosis-inducing factor. Thus, RIP kinase-mediated programmed necrosis is a redundant mechanism of photoreceptor death in addition to apoptosis, and simultaneous inhibition of RIP kinases and caspases is essential for effective neuroprotection and may be a novel therapeutic strategy for treatment of retinal disorders.
PLOS ONE | 2012
Miin Roh; Yan Zhang; Yusuke Murakami; Aristomenis Thanos; Sung Chul Lee; Demetrios G. Vavvas; Larry I. Benowitz; Joan W. Miller
Background Visual loss in glaucoma is associated with pathological changes in retinal ganglion cell (RGC) axons and a slow decline in the RGC population. Age and elevated intraocular pressure (IOP) are the main risk factors for glaucomatous loss of vision. Several studies have implicated the proinflammatory cytokine tumor necrosis factor- α (TNF-α) as a link between elevated IOP and RGC death, but the cellular source of TNF-α and its causative role in RGC death remain uncertain. Here, using a rat model of glaucoma, we investigated the source of elevated TNF- α and examined whether Etanercept, a TNF-α blocker that is in common clinical use for other indications, is protective against RGC death. Methodology/Principal Findings Episcleral vein cauterization (EVC) caused intraocular pressure (IOP) to be elevated for at least 28 days. IOP elevation resulted in a dramatic increase in TNF-α levels within a few days, axonal degeneration, and a 38% loss of RGCs by 4 weeks. Immunostaining coupled with confocal microscopy showed that OHT induced robust induction of TNF-α in Iba-1-positive microglia around the optic nerve head (ONH). Despite persistent elevation of IOP, Etanercept reduced microglial activation, TNF-α levels, axon degeneration in the optic nerve, and the loss of RGCs. Conclusions/Significance Ocular hypertension (OHT) triggers an inflammatory response characterized by the appearance of activated microglia around the ONH that express TNF-α. Blocking TNF-α activity with a clinically approved agent inhibits this microglial response and prevents axonal degeneration and loss of RGCs. These findings suggest a new treatment strategy for glaucoma using TNF- α antagonists or suppressors of inflammation.
Cell Death & Differentiation | 2014
Yusuke Murakami; Hidetaka Matsumoto; Mi In Roh; Andrea Giani; Keiko Kataoka; Yuki Morizane; Maki Kayama; Aristomenis Thanos; Shunji Nakatake; Shoji Notomi; Toshio Hisatomi; Yasuhiro Ikeda; Tatsuro Ishibashi; Kip M. Connor; Joan W. Miller; Demetrios G. Vavvas
There is no known treatment for the dry form of an age-related macular degeneration (AMD). Cell death and inflammation are important biological processes thought to have central role in AMD. Here we show that receptor-interacting protein (RIP) kinase mediates necrosis and enhances inflammation in a mouse model of retinal degeneration induced by dsRNA, a component of drusen in AMD. In contrast to photoreceptor-induced apoptosis, subretinal injection of the dsRNA analog poly(I : C) caused necrosis of the retinal pigment epithelium (RPE), as well as macrophage infiltration into the outer retinas. In Rip3−/− mice, both necrosis and inflammation were prevented, providing substantial protection against poly(I : C)-induced retinal degeneration. Moreover, after poly(I : C) injection, Rip3−/− mice displayed decreased levels of pro-inflammatory cytokines (such as TNF-α and IL-6) in the retina, and attenuated intravitreal release of high-mobility group box-1 (HMGB1), a major damage-associated molecular pattern (DAMP). In vitro, poly(I : C)-induced necrosis were inhibited in Rip3-deficient RPE cells, which in turn suppressed HMGB1 release and dampened TNF-α and IL-6 induction evoked by necrotic supernatants. On the other hand, Rip3 deficiency did not modulate directly TNF-α and IL-6 production after poly(I : C) stimulation in RPE cells or macrophages. Therefore, programmed necrosis is crucial in dsRNA-induced retinal degeneration and may promote inflammation by regulating the release of intracellular DAMPs, suggesting novel therapeutic targets for diseases such as AMD.
PLOS ONE | 2011
Dimosthenis Mantopoulos; Yusuke Murakami; Jason Comander; Aristomenis Thanos; Miin Roh; Joan W. Miller; Demetrios G. Vavvas
Background Detachment of photoreceptors from the underlying retinal pigment epithelium is seen in various retinal disorders such as retinal detachment and age-related macular degeneration and leads to loss of photoreceptors and vision. Pharmacologic inhibition of photoreceptor cell death may prevent this outcome. This study tests whether systemic administration of tauroursodeoxycholic acid (TUDCA) can protect photoreceptors from cell death after experimental retinal detachment in rodents. Methodology/Principal Findings Retinal detachment was created in rats by subretinal injection of hyaluronic acid. The animals were treated daily with vehicle or TUDCA (500 mg/kg). TUNEL staining was used to evaluate cell death. Photoreceptor loss was evaluated by measuring the relative thickness of the outer nuclear layer (ONL). Macrophage recruitment, oxidative stress, cytokine levels, and caspase levels were also quantified. Three days after detachment, TUDCA decreased the number of TUNEL-positive cells compared to vehicle (651±68/mm2 vs. 1314±68/mm2, P = 0.001) and prevented the reduction of ONL thickness ratio (0.84±0.03 vs. 0.65±0.03, P = 0.002). Similar results were obtained after 5 days of retinal detachment. Macrophage recruitment and expression levels of TNF-a and MCP-1 after retinal detachment were not affected by TUDCA treatment, whereas increases in activity of caspases 3 and 9 as well as carbonyl-protein adducts were almost completely inhibited by TUDCA treatment. Conclusions/Significance Systemic administration of TUDCA preserved photoreceptors after retinal detachment, and was associated with decreased oxidative stress and caspase activity. TUDCA may be used as a novel therapeutic agent for preventing vision loss in diseases that are characterized by photoreceptor detachment.
Investigative Ophthalmology & Visual Science | 2011
Andrea Giani; Aristomenis Thanos; Mi In Roh; Edward Connolly; George Trichonas; Ivana K. Kim; Evangelos S. Gragoudas; Demetrios G. Vavvas; Joan W. Miller
PURPOSE To describe the in vivo evolution of laser-induced choroidal neovascularization (CNV) in mice using spectral domain optical coherence tomography (SD-OCT). METHODS Laser photocoagulation was applied to the mouse fundus using a 532-nm diode laser (100, 150, and 200 mW; 100-μm diameter, 0.1-second duration). SD-OCT examination was performed immediately after laser application and at days 3, 5, 7, 14, 21, and 28 after laser. Fluorescein angiography (FA) was performed at day 5, 7, 14, and 28. Acquired SD-OCT images were analyzed to describe morphologic features, measure CNV size and retinal thickness, and assess the frequency of lesions resulting in fluid accumulation. Finally, SD-OCT images were compared to fluorescein angiograms and histologic sections with immunostaining at similar time points. RESULTS SD-OCT allowed visualization of the initial laser damage and the subsequent stages of the injury response. CNV formation reached its maximum size at day 5. By day 7, significant size reduction was observed (P < 0.001), continuing through days 14 and 28. Exudation signs, such as fluid accumulation and increase in retinal thickness, followed the same time course, with a peak at day 5 and a decrease by day 7. Delivery of higher laser energy levels to the RPE/choroid complex resulted in a significant percentage of lesions demonstrating excessive chorioretinal damage without CNV formation. CONCLUSIONS SD-OCT is a fast and reliable tool for the in vivo evaluation of laser-induced CNV, allowing quantification of lesion size and exudation parameters. Moreover, it provides morphologic information that correlates with histologic findings.
Mediators of Inflammation | 2012
Daniel Gologorsky; Aristomenis Thanos; Demetrios G. Vavvas
The global prevalence of diabetes is estimated to be 336 million people, with diabetic complications contributing to significant worldwide morbidity and mortality. Diabetic retinopathy results from cumulative microvascular damage to the retina and inflammation is recognized as a critical driver of this disease process. This paper outlines the pathophysiology leading to proliferative diabetic retinopathy and highlights many of the inflammatory, angiogenic, and cytokine mediators implicated in the development and progression of this disease. We focus a detailed discussion on the current targeted therapeutic interventions used to treat diabetic retinopathy.
Journal of Biological Chemistry | 2011
Yuki Morizane; Aristomenis Thanos; Kimio Takeuchi; Yusuke Murakami; Maki Kayama; George Trichonas; Joan W. Miller; Marc Foretz; Benoit Viollet; Demetrios G. Vavvas
Matrix metalloproteinase-9 (MMP-9) plays a critical role in tissue remodeling under both physiological and pathological conditions. Although MMP-9 expression is low in most cells and is tightly controlled, the mechanism of its regulation is poorly understood. We utilized mouse embryonic fibroblasts (MEFs) that were nullizygous for the catalytic α subunit of AMP-activated protein kinase (AMPK), which is a key regulator of energy homeostasis, to identify AMPK as a suppressor of MMP-9 expression. Total AMPKα deletion significantly elevated MMP-9 expression compared with wild-type (WT) MEFs, whereas single knock-out of the isoforms AMPKα1 and AMPKα2 caused minimal change in the level of MMP-9 expression. The suppressive role of AMPK on MMP-9 expression was mediated through both its activity and presence. The AMPK activators 5-amino-4-imidazole carboxamide riboside and A769662 suppressed MMP-9 expression in WT MEFs, and AMPK inhibition by the overexpression of dominant negative (DN) AMPKα elevated MMP-9 expression. However, in AMPKα−/− MEFs transduced with DN AMPKα, MMP-9 expression was suppressed. AMPKα−/− MEFs showed increased phosphorylation of IκBα, expression of IκBα mRNA, nuclear localization of nuclear factor-κB (NF-κB), and DNA-binding activity of NF-κB compared with WT. Consistently, selective NF-κB inhibitors BMS345541 and SM7368 decreased MMP-9 expression in AMPKα−/− MEFs. Overall, our results suggest that both AMPKα isoforms suppress MMP-9 expression and that both the activity and presence of AMPKα contribute to its function as a regulator of MMP-9 expression by inhibiting the NF-κB pathway.
Investigative Ophthalmology & Visual Science | 2011
Mi In Roh; Yusuke Murakami; Aristomenis Thanos; Demetrios G. Vavvas; Joan W. Miller
PURPOSE To investigate whether edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, would be neuroprotective against photoreceptor cell death in a rat model of retinal detachment (RD). METHODS RD was induced in adult Brown Norway rats by subretinal injection of sodium hyaluronate. Edaravone (3, 5, or 10 mg/kg) or physiologic saline was administered intraperitoneally once a day until death on day 3 or 5. Oxidative stress in the retina was assessed by 4-hydroxynonenal staining or ELISA for protein carbonyl content. Photoreceptor death was assessed by TUNEL and measurement of the outer nuclear layer thickness. Western blot analysis and caspase activity assays were performed. Inflammatory cytokine secretion and inflammatory cell infiltration were evaluated by ELISA and immunostaining, respectively. RESULTS RD resulted in increased generation of ROS. Treatment with 5 mg/kg edaravone significantly reduced the ROS level, along with a decrease in TUNEL-positive cells in the photoreceptor layer. A caspase assay also confirmed decreased activation of caspase-3, -8, and -9 in RD treated with edaravone. The level of the antiapoptotic Bcl-2 was increased in detached retinas after edaravone treatment, whereas the levels of the stress-activated p-ERK1/2 were decreased. In addition, edaravone treatment resulted in a significant decrease in the levels of TNF-α, MCP-1, and macrophage infiltration. CONCLUSIONS Oxidative stress plays an important role in photoreceptor cell death after RD. Edaravone treatment may aid in preventing photoreceptor cell death after RD by suppressing ROS-induced photoreceptor damage.
Mediators of Inflammation | 2012
Stavros N. Moysidis; Aristomenis Thanos; Demetrios G. Vavvas
Proliferative vitreoretinopathy (PVR) is a vision-threatening disease and a common complication of surgery to correct rhegmatogenous retinal detachment (RRD). Several models of the pathogenesis of this disease have been described with some of these models focusing on the role of inflammatory cells and other models focusing on the role of growth factors and cytokines in the vitreous which come into contact with intraretinal and retinal pigment epithelial cells. New experiments have shed light on the pathogenesis of PVR and offer promising avenues for clinical intervention before PVR develops. One such target is the indirect pathway of activation of platelet-derived growth factor receptor alpha (PDGRα), which plays an important role in PVR. Clinical trials assessing the efficacy of 5-fluorouracil (5-FU) and low-molecular-weight heparin (LMWH), daunorubicin, and 13-cis-retinoic acid, among other therapies, have yielded mixed results. Here we review inflammatory and other mechanisms involved in the pathogenesis of PVR, we highlight important clinical trials, and we discuss how findings at the bench have the potential to be translated to the bedside.
American Journal of Pathology | 2011
Maki Kayama; Toru Nakazawa; Aristomenis Thanos; Yuki Morizane; Yusuke Murakami; Sofia Theodoropoulou; Toshiaki Abe; Demetrios G. Vavvas; Joan W. Miller
Photoreceptor apoptosis is a major cause of vision loss in many ocular diseases. Significant progress has been made to elucidate the molecular pathways involved in this process, yet little is known about proteins counteracting these apoptotic pathways. It is established that heat shock proteins (HSPs) function as molecular helper proteins (chaperones) by preventing protein aggregation and facilitating refolding of dysfunctional proteins, critical to the survival of all organisms. Here, we investigated the role of HSP70 on photoreceptor survival after experimental retinal detachment (RD) in mice and rats. We found that HSP70 was up-regulated after RD and associated with phosphorylated Akt, thereby preventing its dephosphorylation and further activation of cell death pathways. Administration of quercetin, which inhibits HSP70 and suppresses Akt phosphorylation significantly increased photoreceptor apoptosis. Similarly, RD-induced photoreceptor apoptosis was augmented in mice carrying hypomorphic mutations of the genes encoding HSP70. On the other hand, administration of geranylgeranylacetone, which induces an increase in HSP70 significantly decreased photoreceptor apoptosis after RD through prolonged activation of Akt pathway. Thus, HSP70 may be a favorable potential target to increase photoreceptor cell survival after RD.