Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arjan Barendregt is active.

Publication


Featured researches published by Arjan Barendregt.


Nature Structural & Molecular Biology | 2011

Structural basis for CRISPR RNA-guided DNA recognition by Cascade

Matthijs M. Jore; Magnus Lundgren; Esther van Duijn; Jelle B. Bultema; Edze R. Westra; Sakharam Waghmare; Blake Wiedenheft; Ümit Pul; Reinhild Wurm; Rolf Wagner; Marieke R Beijer; Arjan Barendregt; Kaihong Zhou; Ambrosius P. Snijders; Mark J. Dickman; Jennifer A. Doudna; Egbert J. Boekema; Albert J. R. Heck; John van der Oost; Stan J. J. Brouns

The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.


Proceedings of the National Academy of Sciences of the United States of America | 2011

RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions.

Blake Wiedenheft; Esther van Duijn; Jelle B. Bultema; Sakharam Waghmare; Kaihong Zhou; Arjan Barendregt; Wiebke Westphal; Albert J. R. Heck; Egbert J. Boekema; Mark J. Dickman; Jennifer A. Doudna

Prokaryotes have evolved multiple versions of an RNA-guided adaptive immune system that targets foreign nucleic acids. In each case, transcripts derived from clustered regularly interspaced short palindromic repeats (CRISPRs) are thought to selectively target invading phage and plasmids in a sequence-specific process involving a variable cassette of CRISPR-associated (cas) genes. The CRISPR locus in Pseudomonas aeruginosa (PA14) includes four cas genes that are unique to and conserved in microorganisms harboring the Csy-type (CRISPR system yersinia) immune system. Here we show that the Csy proteins (Csy1–4) assemble into a 350 kDa ribonucleoprotein complex that facilitates target recognition by enhancing sequence-specific hybridization between the CRISPR RNA and complementary target sequences. Target recognition is enthalpically driven and localized to a “seed sequence” at the 5′ end of the CRISPR RNA spacer. Structural analysis of the complex by small-angle X-ray scattering and single particle electron microscopy reveals a crescent-shaped particle that bears striking resemblance to the architecture of a large CRISPR-associated complex from Escherichia coli, termed Cascade. Although similarity between these two complexes is not evident at the sequence level, their unequal subunit stoichiometry and quaternary architecture reveal conserved structural features that may be common among diverse CRISPR-mediated defense systems.


Journal of the American Chemical Society | 2009

Chaperonin complexes monitored by ion mobility mass spectrometry.

Esther van Duijn; Arjan Barendregt; Silvia A. Synowsky; Cees Versluis; Albert J. R. Heck

The structural analysis of macromolecular functional protein assemblies by contemporary high resolution structural biology techniques (such as nuclear magnetic resonance, X-ray crystallography, and electron microscopy) is often still challenging. The potential of a rather new method to generate structural information, native mass spectrometry, in combination with ion mobility mass spectrometry (IM-MS), is highlighted here. IM-MS allows the assessment of gas phase ion collision cross sections of protein complex ions, which can be related to overall shapes/volumes of protein assemblies, and thus be used to monitor changes in structure. Here we applied IM-MS to study several (intermediate) chaperonin complexes that can be present during substrate folding. Our results reveal that the protein assemblies retain their solution phase structural properties in the gas phase, addressing a long-standing issue in mass spectrometry. All IM-MS data on the chaperonins point toward the burial of genuine substrates inside the GroEL cavity being retained in the gas phase. Additionally, the overall dimensions of the ternary complexes between GroEL, a substrate, and cochaperonin were found to be similar to the dimensions of the empty GroEL-GroES complex. We also investigated the effect of reducing the charge, obtained in the electrospray process, of the protein complex on the global shape of the chaperonin. At decreased charge, the protein complex was found to be more compact, possibly occupying a lower number of conformational states, enabling an improved ion mobility separation. Charge state reduction was found not to affect the relative differences observed in collision cross sections for the chaperonin assemblies.


Molecular Cell | 2014

RNA Targeting by the Type III-A CRISPR-Cas Csm Complex of Thermus thermophilus

Raymond H.J. Staals; Yifan Zhu; David W. Taylor; Jack E. Kornfeld; Kundan Sharma; Arjan Barendregt; Jasper J. Koehorst; Marnix Vlot; Nirajan Neupane; Koen Varossieau; Keiko Sakamoto; Takehiro Suzuki; Naoshi Dohmae; Shigeyuki Yokoyama; Peter J. Schaap; Henning Urlaub; Albert J. R. Heck; Eva Nogales; Jennifer A. Doudna; Akeo Shinkai; John van der Oost

CRISPR-Cas is a prokaryotic adaptive immune system that provides sequence-specific defense against foreign nucleic acids. Here we report the structure and function of the effector complex of the Type III-A CRISPR-Cas system of Thermus thermophilus: the Csm complex (TtCsm). TtCsm is composed of five different protein subunits (Csm1-Csm5) with an uneven stoichiometry and a single crRNA of variable size (35-53 nt). The TtCsm crRNA content is similar to the Type III-B Cmr complex, indicating that crRNAs are shared among different subtypes. A negative stain EM structure of the TtCsm complex exhibits the characteristic architecture of Type I and Type III CRISPR-associated ribonucleoprotein complexes. crRNA-protein crosslinking studies show extensive contacts between the Csm3 backbone and the bound crRNA. We show that, like TtCmr, TtCsm cleaves complementary target RNAs at multiple sites. Unlike Type I complexes, interference by TtCsm does not proceed via initial base pairing by a seed sequence.


Molecular & Cellular Proteomics | 2012

Native Tandem and Ion Mobility Mass Spectrometry Highlight Structural and Modular Similarities in Clustered-Regularly-Interspaced Shot-Palindromic-Repeats (CRISPR)-associated Protein Complexes From Escherichia coli and Pseudomonas aeruginosa

Esther van Duijn; Ioana M. Barbu; Arjan Barendregt; Matthijs M. Jore; Blake Wiedenheft; Magnus Lundgren; Edze R. Westra; Stan J. J. Brouns; Jennifer A. Doudna; John van der Oost; Albert J. R. Heck

The CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) immune system of bacteria and archaea provides acquired resistance against viruses and plasmids, by a strategy analogous to RNA-interference. Key components of the defense system are ribonucleoprotein complexes, the composition of which appears highly variable in different CRISPR/Cas subtypes. Previous studies combined mass spectrometry, electron microscopy, and small angle x-ray scattering to demonstrate that the E. coli Cascade complex (405 kDa) and the P. aeruginosa Csy-complex (350 kDa) are similar in that they share a central spiral-shaped hexameric structure, flanked by associating proteins and one CRISPR RNA. Recently, a cryo-electron microscopy structure of Cascade revealed that the CRISPR RNA molecule resides in a groove of the hexameric backbone. For both complexes we here describe the use of native mass spectrometry in combination with ion mobility mass spectrometry to assign a stable core surrounded by more loosely associated modules. Via computational modeling subcomplex structures were proposed that relate to the experimental IMMS data. Despite the absence of obvious sequence homology between several subunits, detailed analysis of sub-complexes strongly suggests analogy between subunits of the two complexes. Probing the specific association of E. coli Cascade/crRNA to its complementary DNA target reveals a conformational change. All together these findings provide relevant new information about the potential assembly process of the two CRISPR-associated complexes.


Nature Protocols | 2014

Detailed mass analysis of structural heterogeneity in monoclonal antibodies using native mass spectrometry

Sara Rosati; Yang Yang; Arjan Barendregt; Albert J. R. Heck

The molecular complexity of biopharmaceuticals puts severe demands on the bioanalytical techniques required for their comprehensive structural characterization. Mass spectrometry (MS) has gained importance in the analysis of biopharmaceuticals, taking different complementary approaches ranging from peptide-based sequencing to direct analysis of intact proteins and protein assemblies. In this protocol, we describe procedures optimized to perform the analysis of monoclonal antibodies (mAbs) at the intact protein level under pseudo-native conditions, using native MS. Some of the strengths of native MS in the analysis of biopharmaceuticals are its analysis speed, sensitivity and specificity: for most experiments, the whole protocol requires one working day, whereby tens of samples can be analyzed in a multiplexed manner, making it suitable for high-throughput analysis. This method can be used for different applications such as the analysis of mixtures of mAbs, drug-antibody conjugates and the analysis of mAb post-translational modifications, including the qualitative and quantitative analysis of mAb glycosylation.


Journal of Hazardous Materials | 2012

Retention of heavy metals and poly-aromatic hydrocarbons from road water in a constructed wetland and the effect of de-icing

Karin Tromp; Ana T. Lima; Arjan Barendregt; Jos T. A. Verhoeven

A full-scale remediation facility including a detention basin and a wetland was tested for retention of heavy metals and Poly-Aromatic Hydrocarbons (PAHs) from water drained from a motorway in The Netherlands. The facility consisted of a detention basin, a vertical-flow reed bed and a final groundwater infiltration bed. Water samples were taken of road water, detention basin influent and wetland effluent. By using automated sampling, we were able to obtain reliable concentration averages per 4-week period during 18 months. The system retained the PAHs very well, with retention efficiencies of 90-95%. While environmental standards for these substances were surpassed in the road water, this was never the case after passage through the system. For the metals the situation was more complicated. All metals studied (Cu, Zn, Pb, Cd and Ni) had concentrations frequently surpassing environmental standards in the road water. After passage through the system, most metal concentrations were lower than the standards, except for Cu and Zn. There was a dramatic effect of de-icing salts on the concentrations of Cu, Zn, Cd and Ni, in the effluent leaving the system. For Cu, the concentrations even became higher than they had ever been in the road water. It is advised to let the road water bypass the facility during de-icing periods.


Analytical Chemistry | 2013

Analyzing Protein Micro-Heterogeneity in Chicken Ovalbumin by High-Resolution Native Mass Spectrometry Exposes Qualitatively and Semi-Quantitatively 59 Proteoforms

Yang Yang; Arjan Barendregt; Johannis P. Kamerling; Albert J. R. Heck

Taking chicken Ovalbumin as a prototypical example of a eukaryotic protein we use high-resolution native electrospray ionization mass spectrometry on a modified Exactive Orbitrap mass analyzer to qualitatively and semiquantitatively dissect 59 proteoforms in the natural protein. This variety is largely induced by the presence of multiple phosphorylation sites and a glycosylation site that we find to be occupied by at least 45 different glycan structures. Mass analysis of the intact protein in its native state is straightforward and fast, requires very little sample preparation, and provides a direct view on the stoichiometry of all different coappearing modifications that are distinguishable in mass. As such, this proof-of-principal analysis shows that native electrospray ionization mass spectrometry in combination with an Orbitrap mass analyzer offers a means to characterize proteins in a manner highly complementary to standard bottom-up shot-gun proteome analysis.


Analytical Chemistry | 2012

Qualitative and Semiquantitative Analysis of Composite Mixtures of Antibodies by Native Mass Spectrometry

Sara Rosati; Natalie J. Thompson; Arjan Barendregt; Linda Johanna Aleida Hendriks; Alexander Berthold Hendrik Bakker; John de Kruif; Mark Throsby; Esther van Duijn; Albert J. R. Heck

Native mass spectrometry was evaluated for the qualitative and semiquantitative analysis of composite mixtures of antibodies representing biopharmaceutical products coexpressed from single cells. We show that by using automated peak fitting of the ion signals in the native mass spectra, we can quantify the relative abundance of each of the antibodies present in mixtures, with an average accuracy of 3%, comparable to a cation exchange chromatography based approach performed in parallel. Moreover, using native mass spectrometry we were able to identify, separate, and quantify 9 antibodies present in a complex mixture of 10 antibodies, whereas this complexity could not be unraveled by cation exchange chromatography. Native mass spectrometry presents a valuable alternative to existing analytical methods for qualitative and semiquantitative profiling of biopharmaceutical products. It provides both the identity of each species in a mixture by mass determination and the relative abundance through comparison of relative ion signal intensities. Native mass spectrometry is a particularly effective tool for characterization of heterogeneous biopharmaceutical products such as bispecific antibodies and antibody mixtures.


Plant Physiology | 2009

Galactonolactone Dehydrogenase Requires a Redox-Sensitive Thiol for Optimal Production of Vitamin C

Nicole G. H. Leferink; Esther van Duijn; Arjan Barendregt; Albert J. R. Heck; Willem J. H. van Berkel

The mitochondrial flavoenzyme l-galactono-γ-lactone dehydrogenase (GALDH) catalyzes the ultimate step of vitamin C biosynthesis in plants. We found that recombinant GALDH from Arabidopsis (Arabidopsis thaliana) is inactivated by hydrogen peroxide due to selective oxidation of cysteine (Cys)-340, located in the cap domain. Electrospray ionization mass spectrometry revealed that the partial reversible oxidative modification of Cys-340 involves the sequential formation of sulfenic, sulfinic, and sulfonic acid states. S-Glutathionylation of the sulfenic acid switches off GALDH activity and protects the enzyme against oxidative damage in vitro. C340A and C340S GALDH variants are insensitive toward thiol oxidation, but exhibit a poor affinity for l-galactono-1,4-lactone. Cys-340 is buried beneath the protein surface and its estimated pKa of 6.5 suggests the involvement of the thiolate anion in substrate recognition. The indispensability of a redox-sensitive thiol provides a rationale why GALDH was designed as a dehydrogenase and not, like related aldonolactone oxidoreductases, as an oxidase.

Collaboration


Dive into the Arjan Barendregt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John van der Oost

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge