Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arjan F. Theil is active.

Publication


Featured researches published by Arjan F. Theil.


Nature | 2006

A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis

Laura J. Niedernhofer; George A. Garinis; Anja Raams; Astrid S. Lalai; Andria Rasile Robinson; Esther Appeldoorn; Hanny Odijk; Roos Oostendorp; Anwaar Ahmad; Wibeke van Leeuwen; Arjan F. Theil; Wim Vermeulen; Gijsbertus T. J. van der Horst; Peter Meinecke; Wim J. Kleijer; Jan Vijg; Nicolaas G. J. Jaspers; Jan H.J. Hoeijmakers

XPF–ERCC1 endonuclease is required for repair of helix-distorting DNA lesions and cytotoxic DNA interstrand crosslinks. Mild mutations in XPF cause the cancer-prone syndrome xeroderma pigmentosum. A patient presented with a severe XPF mutation leading to profound crosslink sensitivity and dramatic progeroid symptoms. It is not known how unrepaired DNA damage accelerates ageing or its relevance to natural ageing. Here we show a highly significant correlation between the liver transcriptome of old mice and a mouse model of this progeroid syndrome. Expression data from XPF–ERCC1-deficient mice indicate increased cell death and anti-oxidant defences, a shift towards anabolism and reduced growth hormone/insulin-like growth factor 1 (IGF1) signalling, a known regulator of lifespan. Similar changes are seen in wild-type mice in response to chronic genotoxic stress, caloric restriction, or with ageing. We conclude that unrepaired cytotoxic DNA damage induces a highly conserved metabolic response mediated by the IGF1/insulin pathway, which re-allocates resources from growth to somatic preservation and life extension. This highlights a causal contribution of DNA damage to ageing and demonstrates that ageing and end-of-life fitness are determined both by stochastic damage, which is the cause of functional decline, and genetics, which determines the rates of damage accumulation and decline.


Molecular and Cellular Biology | 2004

The Structure-Specific Endonuclease Ercc1-Xpf Is Required To Resolve DNA Interstrand Cross-Link-Induced Double-Strand Breaks

Laura J. Niedernhofer; Hanny Odijk; Magda Budzowska; Ellen van Drunen; Alex Maas; Arjan F. Theil; Jan de Wit; Nicolaas G. J. Jaspers; H. Berna Beverloo; Jan H.J. Hoeijmakers; Roland Kanaar

ABSTRACT Interstrand cross-links (ICLs) are an extremely toxic class of DNA damage incurred during normal metabolism or cancer chemotherapy. ICLs covalently tether both strands of duplex DNA, preventing the strand unwinding that is essential for polymerase access. The mechanism of ICL repair in mammalian cells is poorly understood. However, genetic data implicate the Ercc1-Xpf endonuclease and proteins required for homologous recombination-mediated double-strand break (DSB) repair. To examine the role of Ercc1-Xpf in ICL repair, we monitored the phosphorylation of histone variant H2AX (γ-H2AX). The phosphoprotein accumulates at DSBs, forming foci that can be detected by immunostaining. Treatment of wild-type cells with mitomycin C (MMC) induced γ-H2AX foci and increased the amount of DSBs detected by pulsed-field gel electrophoresis. Surprisingly, γ-H2AX foci were also induced in Ercc1−/− cells by MMC treatment. Thus, DSBs occur after cross-link damage via an Ercc1-independent mechanism. Instead, ICL-induced DSB formation required cell cycle progression into S phase, suggesting that DSBs are an intermediate of ICL repair that form during DNA replication. In Ercc1 −/− cells, MMC-induced γ-H2AX foci persisted at least 48 h longer than in wild-type cells, demonstrating that Ercc1 is required for the resolution of cross-link-induced DSBs. MMC triggered sister chromatid exchanges in wild-type cells but chromatid fusions in Ercc1 −/− and Xpf mutant cells, indicating that in their absence, repair of DSBs is prevented. Collectively, these data support a role for Ercc1-Xpf in processing ICL-induced DSBs so that these cytotoxic intermediates can be repaired by homologous recombination.


Molecular and Cellular Biology | 2005

Nuclear dynamics of PCNA in DNA replication and repair.

Jeroen Essers; Arjan F. Theil; Céline Baldeyron; Wiggert A. van Cappellen; Adriaan B. Houtsmuller; Roland Kanaar; Wim Vermeulen

ABSTRACT The DNA polymerase processivity factor proliferating cell nuclear antigen (PCNA) is central to both DNA replication and repair. The ring-shaped homotrimeric PCNA encircles and slides along double-stranded DNA, acting as a “sliding clamp” that localizes proteins to DNA. We determined the behavior of green fluorescent protein-tagged human PCNA (GFP-hPCNA) in living cells to analyze its different engagements in DNA replication and repair. Photobleaching and tracking of replication foci revealed a dynamic equilibrium between two kinetic pools of PCNA, i.e., bound to replication foci and as a free mobile fraction. To simultaneously monitor PCNA action in DNA replication and repair, we locally inflicted UV-induced DNA damage. A surprisingly longer residence time of PCNA at damaged areas than at replication foci was observed. Using DNA repair mutants, we showed that the initial recruitment of PCNA to damaged sites was dependent on nucleotide excision repair. Local accumulation of PCNA at damaged regions was observed during all cell cycle stages but temporarily disappeared during early S phase. The reappearance of PCNA accumulation in discrete foci at later stages of S phase likely reflects engagements of PCNA in distinct genome maintenance processes dealing with stalled replication forks, such as translesion synthesis (TLS). Using a ubiquitination mutant of GFP-hPCNA that is unable to participate in TLS, we noticed a significantly shorter residence time in damaged areas. Our results show that changes in the position of PCNA result from de novo assembly of freely mobile replication factors in the nucleoplasmic pool and indicate different binding affinities for PCNA in DNA replication and repair.


Nature Genetics | 2004

A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A

Giuseppina Giglia-Mari; Frédéric Coin; Jeffrey A. Ranish; Deborah Hoogstraten; Arjan F. Theil; Nils Wijgers; Nicolaas G. J. Jaspers; Anja Raams; Manuela Argentini; P.J. van der Spek; Elena Botta; Miria Stefanini; Jean-Marc Egly; Ruedi Aebersold; Jan H.J. Hoeijmakers; Wim Vermeulen

DNA repair-deficient trichothiodystrophy (TTD) results from mutations in the XPD and XPB subunits of the DNA repair and transcription factor TFIIH. In a third form of DNA repair–deficient TTD, called group A, none of the nine subunits encoding TFIIH carried mutations; instead, the steady-state level of the entire complex was severely reduced. A new, tenth TFIIH subunit (TFB5) was recently identified in yeast. Here, we describe the identification of the human TFB5 ortholog and its association with human TFIIH. Microinjection of cDNA encoding TFB5 (GTF2H5, also called TTDA) corrected the DNA-repair defect of TTD-A cells, and we identified three functional inactivating mutations in this gene in three unrelated families with TTD-A. The GTF2H5 gene product has a role in regulating the level of TFIIH. The identification of a new evolutionarily conserved subunit of TFIIH implicated in TTD-A provides insight into TFIIH function in transcription, DNA repair and human disease.


Molecular Cell | 2013

Enhanced Chromatin Dynamics by FACT Promotes Transcriptional Restart after UV-Induced DNA Damage

Christoffel Dinant; Giannis Ampatziadis-Michailidis; Hannes Lans; Maria Tresini; Anna Lagarou; Małgorzata Grosbart; Arjan F. Theil; Wiggert A. van Cappellen; Hiroshi Kimura; Jiri Bartek; Maria Fousteri; Adriaan B. Houtsmuller; Wim Vermeulen; Jurgen A. Marteijn

Chromatin remodeling is tightly linked to all DNA-transacting activities. To study chromatin remodeling during DNA repair, we established quantitative fluorescence imaging methods to measure the exchange of histones in chromatin in living cells. We show that particularly H2A and H2B are evicted and replaced at an accelerated pace at sites of UV-induced DNA damage. This accelerated exchange of H2A/H2B is facilitated by SPT16, one of the two subunits of the histone chaperone FACT (facilitates chromatin transcription) but largely independent of its partner SSRP1. Interestingly, SPT16 is targeted to sites of UV light-induced DNA damage-arrested transcription and is required for efficient restart of RNA synthesis upon damage removal. Together, our data uncover an important role for chromatin dynamics at the crossroads of transcription and the UV-induced DNA damage response.


PLOS Biology | 2006

Dynamic interaction of TTDA with TFIIH is stabilized by nucleotide excision repair in living cells.

Giuseppina Giglia-Mari; Catherine Miquel; Arjan F. Theil; Pierre-Olivier Mari; Deborah Hoogstraten; Jessica M.Y. Ng; Christoffel Dinant; Jan H.J. Hoeijmakers; Wim Vermeulen

Transcription/repair factor IIH (TFIIH) is essential for RNA polymerase II transcription and nucleotide excision repair (NER). This multi-subunit complex consists of ten polypeptides, including the recently identified small 8-kDa trichothiodystrophy group A (TTDA)/ hTFB5 protein. Patients belonging to the rare neurodevelopmental repair syndrome TTD-A carry inactivating mutations in the TTDA/hTFB5 gene. One of these mutations completely inactivates the protein, whereas other TFIIH genes only tolerate point mutations that do not compromise the essential role in transcription. Nevertheless, the severe NER-deficiency in TTD-A suggests that the TTDA protein is critical for repair. Using a fluorescently tagged and biologically active version of TTDA, we have investigated the involvement of TTDA in repair and transcription in living cells. Under non-challenging conditions, TTDA is present in two distinct kinetic pools: one bound to TFIIH, and a free fraction that shuttles between the cytoplasm and nucleus. After induction of NER-specific DNA lesions, the equilibrium between these two pools dramatically shifts towards a more stable association of TTDA to TFIIH. Modulating transcriptional activity in cells did not induce a similar shift in this equilibrium. Surprisingly, DNA conformations that only provoke an abortive-type of NER reaction do not result into a more stable incorporation of TTDA into TFIIH. These findings identify TTDA as the first TFIIH subunit with a primarily NER-dedicated role in vivo and indicate that its interaction with TFIIH reflects productive NER.


PLOS Genetics | 2010

Mislocalization of XPF-ERCC1 Nuclease Contributes to Reduced DNA Repair in XP-F Patients

Anwaar Ahmad; Jacqueline H. Enzlin; Nikhil R. Bhagwat; Nils Wijgers; Anja Raams; Esther Appledoorn; Arjan F. Theil; Jan H.J. Hoeijmakers; Wim Vermeulen; Nicolaas G. J. Jaspers; Orlando D. Schärer; Laura J. Niedernhofer

Xeroderma pigmentosum (XP) is caused by defects in the nucleotide excision repair (NER) pathway. NER removes helix-distorting DNA lesions, such as UV–induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE) progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPFR153P) were compared to an XP–causing mutation (XPFR799W) in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPFR153P-YFP expressed in Xpf mutant cells. In addition, microinjection of XPFR153P-ERCC1 into the nucleus of XPF–deficient human cells restored nucleotide excision repair of UV–induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially regulate a cells capacity for DNA repair: by manipulating nuclear localization of XPF-ERCC1.


PLOS Biology | 2009

Differentiation Driven Changes in the Dynamic Organization of Basal Transcription Initiation

Giuseppina Giglia-Mari; Arjan F. Theil; Pierre-Olivier Mari; Sophie Mourgues; Julie Nonnekens; Lise O. Andrieux; Jan de Wit; Catherine Miquel; Nils Wijgers; Alex Maas; Maria Fousteri; Jan H.J. Hoeijmakers; Wim Vermeulen

A novel mouse model reveals that the dynamic behavior of transcription factors can vary considerably between different cells of an organism.


Nature Communications | 2015

SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair

Loes van Cuijk; Gijsbert J. van Belle; Yasemin Turkyilmaz; Sara Lund Poulsen; Roel C. Janssens; Arjan F. Theil; Mariangela Sabatella; Hannes Lans; Niels Mailand; Adriaan B. Houtsmuller; Wim Vermeulen; Jurgen A. Marteijn

XPC recognizes UV-induced DNA lesions and initiates their removal by nucleotide excision repair (NER). Damage recognition in NER is tightly controlled by ubiquitin and SUMO modifications. Recent studies have shown that the SUMO-targeted ubiquitin ligase RNF111 promotes K63-linked ubiquitylation of SUMOylated XPC after DNA damage. However, the exact regulatory function of these modifications in vivo remains elusive. Here we show that RNF111 is required for efficient repair of ultraviolet-induced DNA lesions. RNF111-mediated ubiquitylation promotes the release of XPC from damaged DNA after NER initiation, and is needed for stable incorporation of the NER endonucleases XPG and ERCC1/XPF. Our data suggest that RNF111, together with the CRL4DDB2 ubiquitin ligase complex, is responsible for sequential XPC ubiquitylation, which regulates the recruitment and release of XPC and is crucial for efficient progression of the NER reaction, thereby providing an extra layer of quality control of NER.


PLOS Genetics | 2013

Disruption of TTDA Results in Complete Nucleotide Excision Repair Deficiency and Embryonic Lethality

Arjan F. Theil; Julie Nonnekens; Barbara Steurer; Pierre-Olivier Mari; Jan de Wit; Charlène Lemaitre; Jurgen A. Marteijn; Anja Raams; Alex Maas; Marcel Vermeij; Jeroen Essers; Jan H.J. Hoeijmakers; Giuseppina Giglia-Mari; Wim Vermeulen

The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability. We studied the consequences of TTDA inactivation by generating a Ttda knock-out (Ttda−/−) mouse-model resembling TTD-A patients. Unexpectedly, Ttda−/− mice were embryonic lethal. However, in contrast to full disruption of all other TFIIH subunits, viability of Ttda−/− cells was not affected. Surprisingly, Ttda−/− cells were completely NER deficient, contrary to the incomplete NER deficiency of TTD-A patient-derived cells. We further showed that TTD-A patient mutations only partially inactivate TTDA function, explaining the relatively mild repair phenotype of TTD-A cells. Moreover, Ttda−/− cells were also highly sensitive to oxidizing agents. These findings reveal an essential role of TTDA for life, nucleotide excision repair, and oxidative DNA damage repair and identify Ttda−/− cells as a unique class of TFIIH mutants.

Collaboration


Dive into the Arjan F. Theil's collaboration.

Top Co-Authors

Avatar

Wim Vermeulen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Jan H.J. Hoeijmakers

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Jurgen A. Marteijn

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anja Raams

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nils Wijgers

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Alex Maas

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannes Lans

Erasmus University Rotterdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge