Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arjen Cnossen is active.

Publication


Featured researches published by Arjen Cnossen.


Chemistry: A European Journal | 2011

One-Pot Functionalization of Graphene with Porphyrin through Cycloaddition Reactions

Xiaoyan Zhang; Lili Hou; Arjen Cnossen; Anthony C. Coleman; Oleksii Ivashenko; Petra Rudolf; Bart J. van Wees; Wesley R. Browne; Ben L. Feringa

Two types of graphene-based hybrid materials, graphene-TPP (TPP=tetraphenylporphyrin) and graphene-PdTPP (PdTPP=palladium tetraphenylporphyrin), were prepared directly from pristine graphene through one-pot cycloaddition reactions. The hybrid materials were characterized by thermogravimetric analysis (TGA), by TEM, by UV/Vis, FTIR, Raman, and luminescence spectroscopy, and by fluorescence/phosphorescence lifetime measurements. The presence of the covalent linkages between graphene and porphyrin was confirmed by FTIR and Raman spectroscopy and further supported by control experiments. The presence of TPP (or PdTPP) in the hybrid material was demonstrated by UV/Vis spectroscopy, with TGA results indicating that the graphene-TPP and graphene-PdTPP hybrid materials contained approximately 18 % TPP and 20 % PdTPP. The quenching of fluorescence (or phosphorescence) and reduced lifetimes suggest excited state energy/electron transfer between graphene and the covalently attached TPP (or PdTPP) molecules.


Nature Chemistry | 2012

Ultrafast dynamics in the power stroke of a molecular rotary motor

Jamie Conyard; Kiri Addison; Ismael A. Heisler; Arjen Cnossen; Wesley R. Browne; Ben L. Feringa; Stephen R. Meech

Light-driven molecular motors convert light into mechanical energy through excited-state reactions. Unidirectional rotary molecular motors based on chiral overcrowded alkenes operate through consecutive photochemical and thermal steps. The thermal (helix inverting) step has been optimized successfully through variations in molecular structure, but much less is known about the photochemical step, which provides power to the motor. Ultimately, controlling the efficiency of molecular motors requires a detailed picture of the molecular dynamics on the excited-state potential energy surface. Here, we characterize the primary events that follow photon absorption by a unidirectional molecular motor using ultrafast fluorescence up-conversion measurements with sub 50 fs time resolution. We observe an extraordinarily fast initial relaxation out of the Franck-Condon region that suggests a barrierless reaction coordinate. This fast molecular motion is shown to be accompanied by the excitation of coherent excited-state structural motion. The implications of these observations for manipulating motor efficiency are discussed.


Journal of the American Chemical Society | 2009

Probing flexibility in porphyrin-based molecular wires using double electron electron resonance.

Janet E. Lovett; Markus M. Hoffmann; Arjen Cnossen; Alexander T. J. Shutter; Hannah J. Hogben; John E. Warren; Sofia I. Pascu; Christopher W. M. Kay; Christiane R. Timmel; Harry L. Anderson

A series of butadiyne-linked zinc porphyrin oligomers, with one, two, three, and four porphyrin units and lengths of up to 75 A, have been spin-labeled at both ends with stable nitroxide TEMPO radicals. The pulsed EPR technique of double electron electron resonance (DEER) was used to probe the distribution of intramolecular end-to-end distances, under a range of conditions. DEER measurements were carried out at 50 K in two types of dilute solution glasses: deutero-toluene (with 10% deutero-pyridine) and deutero-o-terphenyl (with 5% 4-benzyl pyridine). The complexes of the porphyrin oligomers with monodentate ligands (pyridine or 4-benzyl pyridine) principally adopt linear conformations. Nonlinear conformations are less populated in the lower glass-transition temperature solvent. When the oligomers bind star-shaped multidentate ligands, they are forced to bend into nonlinear geometries, and the experimental end-to-end distances for these complexes match those from molecular mechanics calculations. Our results show that porphyrin-based molecular wires are shape-persistent, and yet that their shapes can deformed by binding to multivalent ligands. Self-assembled ladder-shaped 2:2 complexes were also investigated to illustrate the scope of DEER measurements for providing structural information on synthetic noncovalent nanostructures.


Journal of the American Chemical Society | 2012

Driving Unidirectional Molecular Rotary Motors with Visible Light by Intra- And Intermolecular Energy Transfer from Palladium Porphyrin

Arjen Cnossen; Lili Hou; Michael M. Pollard; Philana V. Wesenhagen; Wesley R. Browne; Ben L. Feringa

Driving molecular rotary motors using visible light (530-550 nm) instead of UV light was achieved using palladium tetraphenylporphyrin as a triplet sensitizer. Visible light driven rotation was confirmed by UV/vis absorption, circular dichroism and (1)H NMR spectroscopy and the rotation was confirmed to be unidirectional and with similar photostationary states, despite proceeding via a triplet instead of a singlet excited state of the molecular motor. Energy transfer proceeds in both inter- and intramolecular fashion from the triplet state of the porphyrin to the motor. Stern Volmer plots show that the rate of intermolecular quenching of the porphyrin excited state by the molecular motor is diffusion-controlled.


Journal of the American Chemical Society | 2014

Chemically Optimizing Operational Efficiency of Molecular Rotary Motors

Jamie Conyard; Arjen Cnossen; Wesley R. Browne; Ben L. Feringa; Stephen R. Meech

Unidirectional molecular rotary motors that harness photoinduced cis-trans (E-Z) isomerization are promising tools for the conversion of light energy to mechanical motion in nanoscale molecular machines. Considerable progress has been made in optimizing the frequency of ground-state rotation, but less attention has been focused on excited-state processes. Here the excited-state dynamics of a molecular motor with electron donor and acceptor substituents located to modify the excited-state reaction coordinate, without altering its stereochemistry, are studied. The substituents are shown to modify the photochemical yield of the isomerization without altering the motor frequency. By combining 50 fs resolution time-resolved fluorescence with ultrafast transient absorption spectroscopy the underlying excited-state dynamics are characterized. The Franck-Condon excited state relaxes in a few hundred femtoseconds to populate a lower energy dark state by a pathway that utilizes a volume conserving structural change. This is assigned to pyramidalization at a carbon atom of the isomerizing bridging double bond. The structure and energy of the dark state thus reached are a function of the substituent, with electron-withdrawing groups yielding a lower energy longer lived dark state. The dark state is coupled to the Franck-Condon state and decays on a picosecond time scale via a coordinate that is sensitive to solvent friction, such as rotation about the bridging bond. Neither subpicosecond nor picosecond dynamics are sensitive to solvent polarity, suggesting that intramolecular charge transfer and solvation are not key driving forces for the rate of the reaction. Instead steric factors and medium friction determine the reaction pathway, with the sterically remote substitution primarily influencing the energetics. Thus, these data indicate a chemical method of optimizing the efficiency of operation of these molecular motors without modifying their overall rotational frequency.


Angewandte Chemie | 2015

A Molecular Nanotube with Three‐Dimensional π‐Conjugation

Patrik Neuhaus; Arjen Cnossen; Juliane Q. Gong; Laura M. Herz; Harry L. Anderson

A π-conjugated twelve-porphyrin tube is synthesized in 32 % yield by a template-directed coupling reaction that joins together six porphyrin dimers, forming twelve new C=C bonds. The nanotube has two bound templates, enclosing an internal volume of approximately 4.5 nm3. Its UV/Vis/NIR absorption and fluorescence spectra resemble those of a previously reported six-porphyrin ring, but are red-shifted by approximately 300 cm−1, reflecting increased conjugation. Ultrafast fluorescence spectroscopy demonstrates extensive excited-state delocalization. Transfer of electronic excitation from an initially formed state polarized in the direction of the nanotube axis (z axis) to an excited state polarized in the xy plane occurs within 200 fs, resulting in a negative fluorescence anisotropy on excitation at 742 nm.


Topics in Current Chemistry | 2014

Unidirectional Light-Driven Molecular Motors Based on Overcrowded Alkenes

Arjen Cnossen; Wesley R. Browne; Ben L. Feringa

Over the last two decades, interest in nanotechnology has led to the design and synthesis of a toolbox of nanoscale versions of macroscopic devices and components. In molecular nanotechnology, linear motors based on rotaxanes and rotary motors based on overcrowded alkenes are particularly promising for performing work at the nanoscale. In this chapter, progress on light-driven molecular motors based on overcrowded alkenes is reviewed. Both the so-called first and second generation molecular motors are discussed, as well as their potential applications.


Journal of the American Chemical Society | 2015

Six-Coordinate Zinc Porphyrins for Template-Directed Synthesis of Spiro-Fused Nanorings.

Ludovic Favereau; Arjen Cnossen; Julien B. Kelber; Juliane Q. Gong; René M. Oetterli; Jonathan Cremers; Laura M. Herz; Harry L. Anderson

Five-coordinate geometry is the standard binding mode of zinc porphyrins with pyridine ligands. Here we show that pseudo-octahedral six-coordinate zinc porphyrin complexes can also be formed in solution, by taking advantage of the chelate effect. UV–vis–NIR titrations indicate that the strength of this second coordination is ca. 6–8 kJ mol–1. We have used the formation of six-coordinate zinc porphyrin complexes to achieve the template-directed synthesis of a 3D π-conjugated spiro-fused array of 11 porphyrin units, covalently connected in a nontrivial topology. Time-resolved fluorescence anisotropy experiments show that electronic excitation delocalizes between the two perpendicular nanorings of this spiro-system within the experimental time-resolution of 270 fs.


Chemistry: A European Journal | 2009

A trimer of ultrafast nanomotors: synthesis, photochemistry and self-assembly on graphite.

Arjen Cnossen; Dirk Pijper; Tibor Kudernac; Michael M. Pollard; Nathalie Katsonis; Bernard Feringa

Lightning quick! A new ultrafast light-driven molecular motor was developed, which was readily incorporated into a larger trimeric system. The trimer of these motors was studied with STM and at the interface of highly oriented pyrolytic graphite and 1-phenyloctane the molecules form stable arrays in which the chirality of the trimer is expressed on both the molecular and the supramolecular level (see figure).


Journal of the American Chemical Society | 2017

Electronic Delocalization in the Radical Cations of Porphyrin Oligomer Molecular Wires

Martin D. Peeks; Claudia E. Tait; Patrik Neuhaus; Georg M. Fischer; Markus M. Hoffmann; Renée Haver; Arjen Cnossen; Jeffrey Harmer; Christiane R. Timmel; Harry L. Anderson

The radical cations of a family of π-conjugated porphyrin arrays have been investigated: linear chains of N = 1–6 porphyrins, a 6-porphyrin nanoring and a 12-porphyrin nanotube. The radical cations were generated in solution by chemical and electrochemical oxidation, and probed by vis–NIR–IR and EPR spectroscopies. The cations exhibit strong NIR bands at ∼1000 nm and 2000–5000 nm, which shift to longer wavelength with increasing oligomer length. Analysis of the NIR and IR spectra indicates that the polaron is delocalized over 2–3 porphyrin units in the linear oligomers. Some of the IR vibrational bands are strongly intensified on oxidation, and Fano-type antiresonances are observed when activated vibrations overlap with electronic transitions. The solution-phase EPR spectra of the radical cations have Gaussian lineshapes with linewidths proportional to N–0.5, demonstrating that at room temperature the spin hops rapidly over the whole chain on the time scale of the hyperfine coupling (ca. 100 ns). Direct measurement of the hyperfine couplings through electron–nuclear double resonance (ENDOR) in frozen solution (80 K) indicates distribution of the spin over 2–3 porphyrin units for all the oligomers, except the 12-porphyrin nanotube, in which the spin is spread over about 4–6 porphyrins. These experimental studies of linear and cyclic cations give a consistent picture, which is supported by DFT calculations and multiparabolic modeling with a reorganization energy of 1400–2000 cm–1 and coupling of 2000 cm–1 for charge transfer between neighboring sites, placing the system in the Robin–Day class III.

Collaboration


Dive into the Arjen Cnossen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamie Conyard

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiri Addison

University of East Anglia

View shared research outputs
Researchain Logo
Decentralizing Knowledge