Arjen J. Jakobi
European Bioinformatics Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arjen J. Jakobi.
Science | 2016
Florian K. M. Schur; Martin Obr; Wim J. H. Hagen; William Wan; Arjen J. Jakobi; Joanna M. Kirkpatrick; Carsten Sachse; Hans-Georg Kräusslich; John A. G. Briggs
Maturation and inhibition of HIV-1 HIV-1 undergoes a two-step assembly process controlled largely by a single region of its Gag protein. Schur et al. determined a complete atomic model for this region within an assembled Gag protein lattice using cryo-electron tomography together with subtomogram averaging. Amino acids from different parts of multiple Gag molecules come together to form an intricate network of interactions that drive HIV-1 assembly. The final step of maturation into the infectious HIV-1 virus is controlled by structural changes in Gag that alter the accessibility of the final cleavage site to the viral protease. Science, this issue p. 506 Improved cryo-electron tomography and subtomogram averaging show how HIV maturation inhibitor drugs may work. Immature HIV-1 assembles at and buds from the plasma membrane before proteolytic cleavage of the viral Gag polyprotein induces structural maturation. Maturation can be blocked by maturation inhibitors (MIs), thereby abolishing infectivity. The CA (capsid) and SP1 (spacer peptide 1) region of Gag is the key regulator of assembly and maturation and is the target of MIs. We applied optimized cryo-electron tomography and subtomogram averaging to resolve this region within assembled immature HIV-1 particles at 3.9 angstrom resolution and built an atomic model. The structure reveals a network of intra- and intermolecular interactions mediating immature HIV-1 assembly. The proteolytic cleavage site between CA and SP1 is inaccessible to protease. We suggest that MIs prevent CA-SP1 cleavage by stabilizing the structure, and MI resistance develops by destabilizing CA-SP1.
Nature | 2015
Niklas A. Hoffmann; Arjen J. Jakobi; María Moreno-Morcillo; Sebastian Glatt; Jan Kosinski; Wim J. H. Hagen; Carsten Sachse; Christoph W. Müller
Transcription of genes encoding small structured RNAs such as transfer RNAs, spliceosomal U6 small nuclear RNA and ribosomal 5S RNA is carried out by RNA polymerase III (Pol III), the largest yet structurally least characterized eukaryotic RNA polymerase. Here we present the cryo-electron microscopy structures of the Saccharomyces cerevisiae Pol III elongating complex at 3.9 Å resolution and the apo Pol III enzyme in two different conformations at 4.6 and 4.7 Å resolution, respectively, which allow the building of a 17-subunit atomic model of Pol III. The reconstructions reveal the precise orientation of the C82–C34–C31 heterotrimer in close proximity to the stalk. The C53–C37 heterodimer positions residues involved in transcription termination close to the non-template DNA strand. In the apo Pol III structures, the stalk adopts different orientations coupled with closed and open conformations of the clamp. Our results provide novel insights into Pol III-specific transcription and the adaptation of Pol III towards its small transcriptional targets.
Nature Communications | 2011
Arjen J. Jakobi; Alireza Mashaghi; Sander J. Tans; Eric G. Huizinga
von Willebrand factor (VWF) multimers mediate primary adhesion and aggregation of platelets. VWF potency critically depends on multimer size, which is regulated by a feedback mechanism involving shear-induced unfolding of the VWF-A2 domain and cleavage by the metalloprotease ADAMTS-13. Here we report crystallographic and single-molecule optical tweezers data on VWF-A2 providing mechanistic insight into calcium-mediated stabilization of the native conformation that protects A2 from cleavage by ADAMTS-13. Unfolding of A2 requires higher forces when calcium is present and primarily proceeds through a mechanically stable intermediate with non-native calcium coordination. Calcium further accelerates refolding markedly, in particular, under applied load. We propose that calcium improves force sensing by allowing reversible force switching under physiologically relevant hydrodynamic conditions. Our data show for the first time the relevance of metal coordination for mechanical properties of a protein involved in mechanosensing.
Journal of Structural Biology | 2015
Simon A. Fromm; Tanmay A. M. Bharat; Arjen J. Jakobi; Wim J. H. Hagen; Carsten Sachse
With the introduction of direct electron detectors (DED) to the field of electron cryo-microscopy, a wave of atomic-resolution structures has become available. As the new detectors still require comparative characterization, we have used tobacco mosaic virus (TMV) as a test specimen to study the quality of 3D image reconstructions from data recorded on the two direct electron detector cameras, K2 Summit and Falcon II. Using DED movie frames, we explored related image-processing aspects and compared the performance of micrograph-based and segment-based motion correction approaches. In addition, we investigated the effect of dose deposition on the atomic-resolution structure of TMV and show that radiation damage affects negative carboxyl chains first in a side-chain specific manner. Finally, using 450,000 asymmetric units and limiting the effects of radiation damage, we determined a high-resolution cryo-EM map at 3.35 Å resolution. Here, we provide a comparative case study of highly ordered TMV recorded on different direct electron detectors to establish recording and processing conditions that enable structure determination up to 3.2 Å in resolution using cryo-EM.
Developmental Cell | 2015
Michal Skruzny; Ambroise Desfosses; Simone Prinz; Svetlana O. Dodonova; Anna Gieras; Charlotte Uetrecht; Arjen J. Jakobi; Marc Abella; Wim J. H. Hagen; Joachim Schulz; Rob Meijers; Vladimir Rybin; John A. G. Briggs; Carsten Sachse; Marko Kaksonen
Clathrin-mediated endocytosis, the main trafficking route from the plasma membrane to the cytoplasm, is critical to many fundamental cellular processes. Clathrin, coupled to the membrane by adaptor proteins, is thought to play a major structural role in endocytosis by self-assembling into a cage-like lattice around the forming vesicle. Although clathrin adaptors are essential for endocytosis, little is known about their structural role in this process. Here we show that the membrane-binding domains of two conserved clathrin adaptors, Sla2 and Ent1, co-assemble in a PI(4,5)P2-dependent manner to form organized lattices on membranes. We determined the structure of the co-assembled lattice by electron cryo-microscopy and designed mutations that specifically impair the lattice formation in vitro. We show that these mutations block endocytosis in vivo. We suggest that clathrin adaptors not only link the polymerized clathrin to the membrane but also form an oligomeric structure, which is essential for membrane remodeling during endocytosis.
Molecular Cell | 2016
Lucas Tafur; Yashar Sadian; Niklas A. Hoffmann; Arjen J. Jakobi; Rene Wetzel; Wim J. H. Hagen; Carsten Sachse; Christoph W. Müller
Summary RNA polymerase I (Pol I) is a 14-subunit enzyme that solely synthesizes pre-ribosomal RNA. Recently, the crystal structure of apo Pol I gave unprecedented insight into its molecular architecture. Here, we present three cryo-EM structures of elongating Pol I, two at 4.0 Å and one at 4.6 Å resolution, and a Pol I open complex at 3.8 Å resolution. Two modules in Pol I mediate the narrowing of the DNA-binding cleft by closing the clamp domain. The DNA is bound by the clamp head and by the protrusion domain, allowing visualization of the upstream and downstream DNA duplexes in one of the elongation complexes. During formation of the Pol I elongation complex, the bridge helix progressively folds, while the A12.2 C-terminal domain is displaced from the active site. Our results reveal the conformational changes associated with elongation complex formation and provide additional insight into the Pol I transcription cycle.
The EMBO Journal | 2017
Yashar Sadian; Lucas Tafur; Jan Kosinski; Arjen J. Jakobi; Rene Wetzel; Katarzyna Buczak; Wim J. H. Hagen; Martin Beck; Carsten Sachse; Christoph W. Müller
In eukaryotic cells, RNA polymerase I (Pol I) synthesizes precursor ribosomal RNA (pre‐rRNA) that is subsequently processed into mature rRNA. To initiate transcription, Pol I requires the assembly of a multi‐subunit pre‐initiation complex (PIC) at the ribosomal RNA promoter. In yeast, the minimal PIC includes Pol I, the transcription factor Rrn3, and Core Factor (CF) composed of subunits Rrn6, Rrn7, and Rrn11. Here, we present the cryo‐EM structure of the 18‐subunit yeast Pol I PIC bound to a transcription scaffold. The cryo‐EM map reveals an unexpected arrangement of the DNA and CF subunits relative to Pol I. The upstream DNA is positioned differently than in any previous structures of the Pol II PIC. Furthermore, the TFIIB‐related subunit Rrn7 also occupies a different location compared to the Pol II PIC although it uses similar interfaces as TFIIB to contact DNA. Our results show that although general features of eukaryotic transcription initiation are conserved, Pol I and Pol II use them differently in their respective transcription initiation complexes.
Autophagy | 2016
Yohei Ohashi; Nicolas Soler; Miguel García Ortegón; L. C. Zhang; Marie L. Kirsten; Olga Perisic; Glenn R. Masson; John E. Burke; Arjen J. Jakobi; Apostolos A. Apostolakis; Christopher M. Johnson; Maki Ohashi; Nicholas T. Ktistakis; Carsten Sachse; Roger Williams
ABSTRACT The phosphatidylinositol 3-kinase Vps34 is part of several protein complexes. The structural organization of heterotetrameric complexes is starting to emerge, but little is known about organization of additional accessory subunits that interact with these assemblies. Combining hydrogen-deuterium exchange mass spectrometry (HDX-MS), X-ray crystallography and electron microscopy (EM), we have characterized Atg38 and its human ortholog NRBF2, accessory components of complex I consisting of Vps15-Vps34-Vps30/Atg6-Atg14 (yeast) and PIK3R4/VPS15-PIK3C3/VPS34-BECN1/Beclin 1-ATG14 (human). HDX-MS shows that Atg38 binds the Vps30-Atg14 subcomplex of complex I, using mainly its N-terminal MIT domain and bridges the coiled-coil I regions of Atg14 and Vps30 in the base of complex I. The Atg38 C-terminal domain is important for localization to the phagophore assembly site (PAS) and homodimerization. Our 2.2 Å resolution crystal structure of the Atg38 C-terminal homodimerization domain shows 2 segments of α-helices assembling into a mushroom-like asymmetric homodimer with a 4-helix cap and a parallel coiled-coil stalk. One Atg38 homodimer engages a single complex I. This is in sharp contrast to human NRBF2, which also forms a homodimer, but this homodimer can bridge 2 complex I assemblies.
eLife | 2017
Arjen J. Jakobi; Matthias Wilmanns; Carsten Sachse
Atomic models based on high-resolution density maps are the ultimate result of the cryo-EM structure determination process. Here, we introduce a general procedure for local sharpening of cryo-EM density maps based on prior knowledge of an atomic reference structure. The procedure optimizes contrast of cryo-EM densities by amplitude scaling against the radially averaged local falloff estimated from a windowed reference model. By testing the procedure using six cryo-EM structures of TRPV1, β-galactosidase, γ-secretase, ribosome-EF-Tu complex, 20S proteasome and RNA polymerase III, we illustrate how local sharpening can increase interpretability of density maps in particular in cases of resolution variation and facilitates model building and atomic model refinement.
IUCrJ | 2016
Arjen J. Jakobi; Daniel M. Passon; Kèvin Knoops; Francesco Stellato; Mengning Liang; Thomas A. White; Thomas Seine; Marc Messerschmidt; Henry N. Chapman; Matthias Wilmanns
The application of serial femtosecond crystallography to naturally occurring peroxisomal protein crystals within yeast cells is described. The concept of utilizing peroxisomes for the production of protein nanocrystals is outlined.