Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arjen Q. Bakker is active.

Publication


Featured researches published by Arjen Q. Bakker.


PLOS ONE | 2008

Heterosubtypic Neutralizing Monoclonal Antibodies Cross-Protective against H5N1 and H1N1 Recovered from Human IgM+ Memory B Cells

Mark Throsby; Edward Norbert van den Brink; Mandy Jongeneelen; Leo L.M. Poon; Philippe Alard; Lisette A. H. M. Cornelissen; Arjen Q. Bakker; Freek Cox; Els van Deventer; Yi Guan; Jindrich Cinatl; Jan ter Meulen; Ignace Lasters; Rita Carsetti; Malik Peiris; John de Kruif; Jaap Goudsmit

Background The hemagglutinin (HA) glycoprotein is the principal target of protective humoral immune responses to influenza virus infections but such antibody responses only provide efficient protection against a narrow spectrum of HA antigenic variants within a given virus subtype. Avian influenza viruses such as H5N1 are currently panzootic and pose a pandemic threat. These viruses are antigenically diverse and protective strategies need to cross protect against diverse viral clades. Furthermore, there are 16 different HA subtypes and no certainty the next pandemic will be caused by an H5 subtype, thus it is important to develop prophylactic and therapeutic interventions that provide heterosubtypic protection. Methods and Findings Here we describe a panel of 13 monoclonal antibodies (mAbs) recovered from combinatorial display libraries that were constructed from human IgM+ memory B cells of recent (seasonal) influenza vaccinees. The mAbs have broad heterosubtypic neutralizing activity against antigenically diverse H1, H2, H5, H6, H8 and H9 influenza subtypes. Restriction to variable heavy chain gene IGHV1-69 in the high affinity mAb panel was associated with binding to a conserved hydrophobic pocket in the stem domain of HA. The most potent antibody (CR6261) was protective in mice when given before and after lethal H5N1 or H1N1 challenge. Conclusions The human monoclonal CR6261 described in this study could be developed for use as a broad spectrum agent for prophylaxis or treatment of human or avian influenza infections without prior strain characterization. Moreover, the CR6261 epitope could be applied in targeted vaccine strategies or in the design of novel antivirals. Finally our approach of screening the IgM+ memory repertoire could be applied to identify conserved and functionally relevant targets on other rapidly evolving pathogens.


Journal of Virology | 2006

Isolation and Characterization of Human Monoclonal Antibodies from Individuals Infected with West Nile Virus

Mark Throsby; Cecile Geuijen; Jaap Goudsmit; Arjen Q. Bakker; Jehanara Korimbocus; R. Arjen Kramer; Marieke Clijsters-van der Horst; Maureen de Jong; Mandy Jongeneelen; Sandra Thijsse; Renate Smit; Therese J. Visser; Nora Bijl; Wilfred E. Marissen; Mark Loeb; David J. Kelvin; Wolfgang Preiser; Jan ter Meulen; John de Kruif

ABSTRACT Monoclonal antibodies (MAbs) neutralizing West Nile Virus (WNV) have been shown to protect against infection in animal models and have been identified as a correlate of protection in WNV vaccine studies. In the present study, antibody repertoires from three convalescent WNV-infected patients were cloned into an scFv phage library, and 138 human MAbs binding to WNV were identified. One hundred twenty-one MAbs specifically bound to the viral envelope (E) protein and four MAbs to the premembrane (prM) protein. Enzyme-linked immunosorbent assay-based competitive-binding assays with representative E protein-specific MAbs demonstrated that 24/51 (47%) bound to domain II while only 4/51 (8%) targeted domain III. In vitro neutralizing activity was demonstrated for 12 MAbs, and two of these, CR4374 and CR4353, protected mice from lethal WNV challenge at 50% protective doses of 12.9 and 357 μg/kg of body weight, respectively. Our data analyzing three infected individuals suggest that the human anti-WNV repertoire after natural infection is dominated by nonneutralizing or weakly neutralizing MAbs binding to domain II of the E protein, while domain III-binding MAbs able to potently neutralize WNV in vitro and in vivo are rare.


Cancer Research | 2004

C-Type Lectin-Like Molecule-1 A Novel Myeloid Cell Surface Marker Associated with Acute Myeloid Leukemia

Alexander Berthold Hendrik Bakker; Sonja van den Oudenrijn; Arjen Q. Bakker; Nicole Feller; Marja van Meijer; Judith Bia; Mandy Jongeneelen; Therese J. Visser; Nora Bijl; Cecilia A.W. Geuijen; Wilfred E. Marissen; Katarina Radošević; Mark Throsby; Gerrit Jan Schuurhuis; Gert J. Ossenkoppele; John de Kruif; Jaap Goudsmit; Ada M. Kruisbeek

Acute myeloid leukemia (AML) has a poor prognosis due to treatment-resistant relapses. A humanized anti-CD33 antibody (Mylotarg) showed a limited response rate in relapsed AML. To discover novel AML antibody targets, we selected a panel of single chain Fv fragments using phage display technology combined with flow cytometry on AML tumor samples. One selected single chain Fv fragment broadly reacted with AML samples and with myeloid cell lineages within peripheral blood. Expression cloning identified the antigen recognized as C-type lectin-like molecule-1 (CLL-1), a previously undescribed transmembrane glycoprotein. CLL-1 expression was analyzed with a human anti-CLL-1 antibody that was generated from the single chain Fv fragment. CLL-1 is restricted to the hematopoietic lineage, in particular to myeloid cells present in peripheral blood and bone marrow. CLL-1 is absent on uncommitted CD34+/CD38− or CD34+/CD33− stem cells and present on subsets of CD34+/CD38+ or CD34+/CD33+ progenitor cells. CLL-1 is not expressed in any other tissue. In contrast, analysis of primary AMLs demonstrated CLL-1 expression in 92% (68 of 74) of the samples. As an AML marker, CLL-1 was able to complement CD33, because 67% (8 of 12) of the CD33− AMLs expressed CLL-1. CLL-1 showed variable expression (10–60%) in CD34+ cells in chronic myelogenous leukemia and myelodysplastic syndrome but was absent in 12 of 13 cases of acute lymphoblastic leukemia. The AML reactivity combined with the restricted expression on normal cells identifies CLL-1 as a novel potential target for AML treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo

Nicolas Legrand; Nicholas D. Huntington; Maho Nagasawa; Arjen Q. Bakker; Remko Schotte; Helene Strick-Marchand; Sandra J. de Geus; Stephan M. Pouw; Martino Böhne; Arie Voordouw; Kees Weijer; James P. Di Santo; Hergen Spits

The homeostatic control mechanisms regulating human leukocyte numbers are poorly understood. Here, we assessed the role of phagocytes in this process using human immune system (HIS) BALB/c Rag2−/−IL-2Rγc−/− mice in which human leukocytes are generated from transplanted hematopoietic progenitor cells. Interactions between signal regulatory protein alpha (SIRPα; expressed on phagocytes) and CD47 (expressed on hematopoietic cells) negatively regulate phagocyte activity of macrophages and other phagocytic cells. We previously showed that B cells develop and survive robustly in HIS mice, whereas T and natural killer (NK) cells survive poorly. Because human CD47 does not interact with BALB/c mouse SIRPα, we introduced functional CD47/SIRPα interactions in HIS mice by transducing mouse CD47 into human progenitor cells. Here, we show that this procedure resulted in a dramatic and selective improvement of progenitor cell engraftment and human T- and NK-cell homeostasis in HIS mouse peripheral lymphoid organs. The amount of engrafted human B cells also increased but much less than that of T and NK cells, and total plasma IgM and IgG concentrations increased 68- and 35-fold, respectively. Whereas T cells exhibit an activated/memory phenotype in the absence of functional CD47/SIRPα interactions, human T cells accumulated as CD4+ or CD8+ single-positive, naive, resting T cells in the presence of functional CD47/SIRPα interactions. Thus, in addition to signals mediated by T cell receptor (TCR)/MHC and/or IL/IL receptor interactions, sensing of cell surface CD47 expression by phagocyte SIRPα is a critical determinant of T- and NK-cell homeostasis under steady-state conditions in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A common solution to group 2 influenza virus neutralization

Robert H. E. Friesen; Peter S. Lee; Esther Jm Stoop; Ryan M. B. Hoffman; Damian C. Ekiert; Gira Bhabha; Wenli Yu; Jarek Juraszek; Wouter Koudstaal; Mandy Jongeneelen; Hans J. W. M. Korse; C. Ophorst; Els C. M. Brinkman-van der Linden; Mark Throsby; Mark J. Kwakkenbos; Arjen Q. Bakker; Tim Beaumont; Hergen Spits; Ted Kwaks; Ronald Vogels; Andrew B. Ward; Jaap Goudsmit; Ian A. Wilson

Significance The HA surface glycoprotein on influenza A viruses mediates viral entry into host cells. HA is highly variable and classified into 18 divergent subtypes, which cluster into two major phylogenetic groups. Antibody CR8043 has heterosubtypic neutralizing activity against group 2 viruses, including H3 viruses that currently circulate in humans. X-ray and EM structures of CR8043 Fab in complex with H3 HAs reveal that the antibody targets a conserved epitope on the HA stem. Compared with CR8020, the only other structurally characterized group 2 neutralizing antibody, CR8043 binds to HA with a different approach angle using different contact residues. The epitopes of both antibodies are very similar, which suggests that this conserved stem epitope has great potential for design of therapeutics and vaccines. The discovery and characterization of broadly neutralizing antibodies (bnAbs) against influenza viruses have raised hopes for the development of monoclonal antibody (mAb)-based immunotherapy and the design of universal influenza vaccines. Only one human bnAb (CR8020) specifically recognizing group 2 influenza A viruses has been previously characterized that binds to a highly conserved epitope at the base of the hemagglutinin (HA) stem and has neutralizing activity against H3, H7, and H10 viruses. Here, we report a second group 2 bnAb, CR8043, which was derived from a different germ-line gene encoding a highly divergent amino acid sequence. CR8043 has in vitro neutralizing activity against H3 and H10 viruses and protects mice against challenge with a lethal dose of H3N2 and H7N7 viruses. The crystal structure and EM reconstructions of the CR8043-H3 HA complex revealed that CR8043 binds to a site similar to the CR8020 epitope but uses an alternative angle of approach and a distinct set of interactions. The identification of another antibody against the group 2 stem epitope suggests that this conserved site of vulnerability has great potential for design of therapeutics and vaccines.


PLOS Medicine | 2006

Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants

Jan ter Meulen; Edward Norbert van den Brink; Leo L.M. Poon; Wilfred E. Marissen; Cynthia Sau-Wai Leung; Freek Cox; Chung Y. Cheung; Arjen Q. Bakker; Johannes Antonie Bogaards; Els van Deventer; Wolfgang Preiser; Hans Wilhelm Doerr; Vincent T. K. Chow; John de Kruif; J. S. M. Peiris; Jaap Goudsmit

Background Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties. Methods and Findings Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318–510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one. Conclusions The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection.


Journal of Immunology | 2009

IL-7 Enhances Thymic Human T Cell Development in "Human Immune System" Rag2–/–IL-2Rγc–/– Mice without Affecting Peripheral T Cell Homeostasis

Anja U. van Lent; Wendy Dontje; Maho Nagasawa; Rachida Siamari; Arjen Q. Bakker; Stephan M. Pouw; Kelly Maijoor; Kees Weijer; Jan J. Cornelissen; Bianca Blom; James P. Di Santo; Hergen Spits; Nicolas Legrand

IL-7 is a central cytokine in the development of hematopoietic cells, although interspecies discrepancies have been reported. By coculturing human postnatal thymus hematopoietic progenitors and OP9-huDL1 stromal cells, we found that murine IL-7 is ∼100-fold less potent than human IL-7 for supporting human T cell development in vitro. We investigated the role of human IL-7 in newborn BALB/c Rag2−/−γc−/− mice transplanted with human hematopoietic stem cells (HSC) as an in vivo model of human hematopoiesis using three approaches to improve IL-7 signaling: administration of human IL-7, ectopic expression of human IL-7 by the transplanted human HSC, or enforced expression of a murine/human chimeric IL-7 receptor binding murine IL-7. We show that premature IL-7 signaling at the HSC stage, before entrance in the thymus, impeded T cell development, whereas increased intrathymic IL-7 signaling significantly enhanced the maintenance of immature thymocytes. Increased thymopoiesis was also observed when we transplanted BCL-2- or BCL-xL-transduced human HSC. Homeostasis of peripheral mature T cells in this humanized mouse model was not improved by any of these strategies. Overall, our results provide evidence for an important role of IL-7 in human T cell development in vivo and highlight the notion that IL-7 availability is but one of many signals that condition peripheral T cell homeostasis.


European Journal of Immunology | 2005

The human antibody repertoire specific for rabies virus glycoprotein as selected from immune libraries.

R. Arjen Kramer; Wilfred E. Marissen; Jaap Goudsmit; Therese J. Visser; Marieke Clijsters-van der Horst; Arjen Q. Bakker; Maureen de Jong; Mandy Jongeneelen; Sandra Thijsse; Harold H. J. Backus; Amy B. Rice; William C. Weldon; Charles E. Rupprecht; Bernhard Dietzschold; Alexander Berthold Hendrik Bakker; John de Kruif

Antibody phage display technology was used to identify human monoclonal antibodies that neutralize rabies virus (RV). A phage repertoire was constructed using antibody genes harvested from the blood of vaccinated donors. Selections using this repertoire and three different antigen formats of the RV glycoprotein (gp) resulted in the identification of 147 unique antibody fragments specific for the RV gp. Analysis of the DNA sequences of these antibodies demonstrated a large variation in the heavy‐ and light‐chain germ‐line gene usage, suggesting that a broad antibody repertoire was selected. The single‐chain variable fragment (scFv) antibodies were tested in vitro for RV neutralization, resulting in 39 specificities that neutralize the virus. Of the scFv clones, 21 were converted into full‐length human IgG1 format. Analysis of viral escape variants and binding competition experiments indicated that the majority of the neutralizing antibodies are directed against antigenic site III of the RV gp. The obtained specificities expand the set of human anti‐RV antibodies eligible for inclusion in an antibody cocktail aimed for use in rabies post‐exposure prophylaxis.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity

Koen Wagner; Mark J. Kwakkenbos; Yvonne B. Claassen; Kelly Maijoor; Martino Böhne; Koenraad F. van der Sluijs; Martin D. Witte; Diana van Zoelen; Lisette A. H. M. Cornelissen; Tim Beaumont; Arjen Q. Bakker; Hidde L. Ploegh; Hergen Spits

Significance Bispecific antibodies expand the function of conventional antibodies. However, therapeutic application of bispecifics is hampered by the reduced physiochemical stability of such molecules. We present a format for bispecific antibodies, fusing two full-sized antibodies via their C termini. This format does not require mutations in the antibody constant domains beyond installation of a five-residue tag, ensuring that the native antibody structure is fully retained in the bispecific product. We have validated the approach by linking two anti-influenza A antibodies, each active against a different subgroup of the virus. The bispecific antibody dimer retains the activity and the stability of the two original antibodies. Bispecific antibodies have therapeutic potential by expanding the functions of conventional antibodies. Many different formats of bispecific antibodies have meanwhile been developed. Most are genetic modifications of the antibody backbone to facilitate incorporation of two different variable domains into a single molecule. Here, we present a bispecific format where we have fused two full-sized IgG antibodies via their C termini using sortase transpeptidation and click chemistry to create a covalently linked IgG antibody heterodimer. By linking two potent anti-influenza A antibodies together, we have generated a full antibody dimer with bispecific activity that retains the activity and stability of the two fusion partners.


Methods | 2014

Genetic manipulation of B cells for the isolation of rare therapeutic antibodies from the human repertoire

Mark J. Kwakkenbos; Arjen Q. Bakker; Pauline M. van Helden; Koen Wagner; Etsuko Yasuda; Hergen Spits; Tim Beaumont

Antibody based therapies are increasingly applied to prevent and treat human disease. While the majority of antibodies currently on the market are chimeric or humanized antibodies from rodents, the focus has now shifted to the isolation and development of fully human antibodies. By retroviral transduction of B cell lymphoma-6 (BCL-6), which prevents terminal differentiation of B cells and, the anti-apoptotic gene B-cell lymphoma-extra large (Bcl-xL) into primary human B cells we efficiently immortalize antibody-producing B cells allowing the isolation of therapeutic antibodies. Selection of antigen-specific B cell clones was greatly facilitated because the transduced B cells retain surface immunoglobulin expression and secrete immunoglobulin into the culture supernatant. Surface immunoglobulin expression can be utilized to stain and isolate antigen specific B cell clones with labeled antigen. Immunoglobulins secreted in culture supernatant can directly be tested in functional assays to identify unique B cell clones. Here we describe the key features of our Bcl-6/Bcl-xL culture platform (AIMSelect).

Collaboration


Dive into the Arjen Q. Bakker's collaboration.

Top Co-Authors

Avatar

Hergen Spits

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Tim Beaumont

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Hensbergen

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge