Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arjumand Ghazi is active.

Publication


Featured researches published by Arjumand Ghazi.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex

Arjumand Ghazi; Sivan Henis-Korenblit; Cynthia Kenyon

The proteasome maintains cellular homeostasis by degrading oxidized and damaged proteins, a function known to be impaired during aging. The proteasome also acts in a regulatory capacity through E3 ligases to mediate the spatially and temporally controlled breakdown of specific proteins that impact biological processes. We have identified components of a Skp1-Cul1-F-Box E3 ligase complex that are required for the extended lifespan of Caenorhabditis elegans insulin/insulin-like growth factor-1-signaling (IIS) mutants. The CUL-1 complex functions in postmitotic, adult somatic tissues of IIS mutants to enhance longevity. Reducing IIS function leads to the nuclear accumulation of the DAF-16/FOXO transcription factor, which extends lifespan by regulating downstream longevity genes. These CUL-1 complex genes act, at least in part, by promoting the transcriptional activity of DAF-16/FOXO. Together, our findings describe a role for an important cellular pathway, the proteasomal pathway, in the genetic determination of lifespan.


PLOS Genetics | 2014

Germline Signals Deploy NHR-49 to Modulate Fatty-Acid β-Oxidation and Desaturation in Somatic Tissues of C. elegans

Ramesh Ratnappan; Francis Raj Gandhi Amrit; Shaw-Wen Chen; Hasreet Gill; Kyle Holden; Jordan D. Ward; Keith R. Yamamoto; Carissa Perez Olsen; Arjumand Ghazi

In C. elegans, removal of the germline extends lifespan significantly. We demonstrate that the nuclear hormone receptor, NHR-49, enables the response to this physiological change by increasing the expression of genes involved in mitochondrial β-oxidation and fatty-acid desaturation. The coordinated augmentation of these processes is critical for germline-less animals to maintain their lipid stores and to sustain de novo fat synthesis during adulthood. Following germline ablation, NHR-49 is up-regulated in somatic cells by the conserved longevity determinants DAF-16/FOXO and TCER-1/TCERG1. Accordingly, NHR-49 overexpression in fertile animals extends their lifespan modestly. In fertile adults, nhr-49 expression is DAF-16/FOXO and TCER-1/TCERG1 independent although its depletion causes age-related lipid abnormalities. Our data provide molecular insights into how reproductive stimuli are integrated into global metabolic changes to alter the lifespan of the animal. They suggest that NHR-49 may facilitate the adaptation to loss of reproductive potential through synchronized enhancement of fatty-acid oxidation and desaturation, thus breaking down some fats ordained for reproduction and orchestrating a lipid profile conducive for somatic maintenance and longevity.


Genesis | 2013

Transcriptional networks that mediate signals from reproductive tissues to influence lifespan

Arjumand Ghazi

Aging and reproduction are two defining features of our life. Historically, research has focused on the well‐documented decline in reproductive capacity that accompanies old age, especially with increasing maternal age in humans. However, recent experiments in model organisms such as worms, flies, and mice have shown that a dialogue in the opposite direction may be widely prevalent, and that signals from reproductive tissues have a significant effect on the rate of aging of organisms. This pathway has been described in considerable detail in the nematode Caenorhabditis elegans. Molecular genetic studies suggest that signals from the germline control a network of transcriptional regulators that function in the intestine to influence longevity. This network includes conserved, longevity‐promoting Forkhead Box (FOX) family transcription factors such as DAF‐16/FOXO and PHA‐4/FOXA, nuclear hormone receptors, as well as a transcription elongation factor, TCER‐1/TCERG1. Genomic and targeted molecular analyses have revealed that these transcription factors modulate autophagy, lipid metabolism, and possibly other cellular processes to increase the length of the animals life. This review aims to provide an overview of the current knowledge on the genetic mechanism that underlies the reproductive control of aging with particular focus on the transcriptional regulators that constitute the main molecular players in this longevity pathway. genesis 51:1‐15, 2013.


Mechanisms of Development | 2003

Prepattern genes and signaling molecules regulate stripe expression to specify Drosophila flight muscle attachment sites

Arjumand Ghazi; Litty Paul; K. VijayRaghavan

In Drosophila, muscles attach to epidermal tendon cells specified by the gene stripe (sr). Flight muscle attachment sites are prefigured on the wing imaginal disc by sr expression in discrete domains. We describe the mechanisms underlying the specification of these domains of sr expression. We show that the concerted activities of the wingless (wg), decapentaplegic (dpp) and Notch (N) signaling pathways, and the prepattern genes pannier (pnr) and u-shaped (ush) establish domains of sr expression. N is required for initiation of sr expression. pnr is a positive regulator of sr, and is inhibited by ush in this function. The Wg signal differentially influences the formation of different sr domains. These results identify the multiple regulatory elements involved in the positioning of Drosophila flight muscle attachment sites.


PLOS Genetics | 2016

DAF-16 and TCER-1 Facilitate Adaptation to Germline Loss by Restoring Lipid Homeostasis and Repressing Reproductive Physiology in C. elegans

Francis Raj Gandhi Amrit; Elizabeth Marie Steenkiste; Ramesh Ratnappan; Shaw-Wen Chen; T. Brooke McClendon; Dennis Kostka; Judith L. Yanowitz; Carissa Perez Olsen; Arjumand Ghazi

Elimination of the proliferating germline extends lifespan in C. elegans. This phenomenon provides a unique platform to understand how complex metazoans retain metabolic homeostasis when challenged with major physiological perturbations. Here, we demonstrate that two conserved transcription regulators essential for the longevity of germline-less adults, DAF-16/FOXO3A and TCER-1/TCERG1, concurrently enhance the expression of multiple genes involved in lipid synthesis and breakdown, and that both gene classes promote longevity. Lipidomic analyses revealed that key lipogenic processes, including de novo fatty acid synthesis, triglyceride production, desaturation and elongation, are augmented upon germline removal. Our data suggest that lipid anabolic and catabolic pathways are coordinately augmented in response to germline loss, and this metabolic shift helps preserve lipid homeostasis. DAF-16 and TCER-1 also perform essential inhibitory functions in germline-ablated animals. TCER-1 inhibits the somatic gene-expression program that facilitates reproduction and represses anti-longevity genes, whereas DAF-16 impedes ribosome biogenesis. Additionally, we discovered that TCER-1 is critical for optimal fertility in normal adults, suggesting that the protein acts as a switch supporting reproductive fitness or longevity depending on the presence or absence of the germline. Collectively, our data offer insights into how organisms adapt to changes in reproductive status, by utilizing the activating and repressive functions of transcription factors and coordinating fat production and degradation.


PLOS Genetics | 2016

Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway

Scott Alexander Keith; Sarah K. Maddux; Yayu Zhong; Meghna N. Chinchankar; Annabel A. Ferguson; Arjumand Ghazi; Alfred L. Fisher

The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique platform to explore these possibilities.


Methods | 2014

The C. elegans lifespan assay toolkit

Francis Raj Gandhi Amrit; Ramesh Ratnappan; Scott Alexander Keith; Arjumand Ghazi

Since the discovery of single gene mutations that double its lifespan, the nematode Caenorhabditis elegans has provided remarkable insights into the biology of aging. The precisely measurable lifespan of worms has proven to be an efficient tool to assess the impact of various genetic, physiological and environmental factors on organismal aging. In this article, we describe methods to set up and monitor experiments to determine worm lifespan. We include procedures used for classical, small-scale lifespan assays that are generally performed on solid media, and review recent advances in high-throughput, automated longevity experiments conducted in liquid culture and microfluidic devices. In addition, tools that help analyze this data to obtain survival statistics are summarized, and C. elegans strains that offer particular advantages for lifespan studies are listed.


Current Genetic Medicine Reports | 2015

Recent Discoveries in the Reproductive Control of Aging

Scott Alexander Keith; Arjumand Ghazi

Reproduction is an energetically expensive endeavor that has profound influences on many life history traits, including the length of life. Reduced reproduction is associated with increased longevity in many organisms. Similarly, mating has been reported to shorten the lifespan of females in multiple species. Contemporary studies in model organisms have begun to unravel the molecular complexities that govern the relationship between reproduction and longevity. Here, we discuss recent discoveries that examine the genetic mechanisms by which two contrasting reproductive events—germline loss and successful mating—impact the lifespan of Caenorhabditis elegans. We first describe genes necessary for the longevity associated with germline removal in C. elegans, with particular emphasis on microRNAs (miRNAs) that play essential roles in this paradigm. Next, we discuss current efforts toward molecular characterization of procreative interactions between different sexes that affect lifespan. Together, these studies illustrate how the same genetic pathways may be utilized by different sexes to exert behavioral and physiological changes in response to various reproductive events.


Worm | 2016

Nuclear hormone receptors as mediators of metabolic adaptability following reproductive perturbations.

Ramesh Ratnappan; Jordan D. Ward; Keith R. Yamamoto; Arjumand Ghazi

ABSTRACT Previously, we identified a group of nuclear hormone receptors (NHRs) that promote longevity in the nematode Caenorhabditis elegans following germline-stem cell (GSC) loss. This group included NHR-49, the worm protein that performs functions similar to vertebrate PPARα, a key regulator of lipid metabolism. We showed that NHR-49/PPARα enhances mitochondrial β-oxidation and fatty acid desaturation upon germline removal, and through the coordinated enhancement of these processes allows the animal to retain lipid homeostasis and undergo lifespan extension. NHR-49/PPARα expression is elevated in GSC-ablated animals, in part, by DAF-16/FOXO3A and TCER-1/TCERG1, two other conserved, pro-longevity transcriptional regulators that are essential for germline-less longevity. In exploring the roles of the other pro-longevity NHRs, we discovered that one of them, NHR-71/HNF4, physically interacted with NHR-49/PPARα. NHR-71/HNF4 did not have a broad impact on the expression of β-oxidation and desaturation targets of NHR-49/PPARα. But, both NHR-49/PPARα and NHR-71/HNF4 were essential for the increased expression of DAF-16/FOXO3A- and TCER-1/TCERG1-downstream target genes. In addition, nhr-49 inactivation caused a striking membrane localization of KRI-1, the only known common upstream regulator of DAF-16/FOXO3A and TCER-1/TCERG1, suggesting that it may operate in a positive feedback loop to potentiate the activity of this pathway. These data underscore how selective interactions between NHRs that function as nodes in metabolic networks, confer functional specificity in response to different physiological stimuli.


G3: Genes, Genomes, Genetics | 2016

X Chromosome Crossover Formation and Genome Stability in Caenorhabditis elegans Are Independently Regulated by xnd-1

T. Brooke McClendon; Rana Mainpal; Francis Raj Gandhi Amrit; Michael W. Krause; Arjumand Ghazi; Judith L. Yanowitz

The germ line efficiently combats numerous genotoxic insults to ensure the high fidelity propagation of unaltered genomic information across generations. Yet, germ cells in most metazoans also intentionally create double-strand breaks (DSBs) to promote DNA exchange between parental chromosomes, a process known as crossing over. Homologous recombination is employed in the repair of both genotoxic lesions and programmed DSBs, and many of the core DNA repair proteins function in both processes. In addition, DNA repair efficiency and crossover (CO) distribution are both influenced by local and global differences in chromatin structure, yet the interplay between chromatin structure, genome integrity, and meiotic fidelity is still poorly understood. We have used the xnd-1 mutant of Caenorhabditis elegans to explore the relationship between genome integrity and crossover formation. Known for its role in ensuring X chromosome CO formation and germ line development, we show that xnd-1 also regulates genome stability. xnd-1 mutants exhibited a mortal germ line, high embryonic lethality, high incidence of males, and sensitivity to ionizing radiation. We discovered that a hypomorphic allele of mys-1 suppressed these genome instability phenotypes of xnd-1, but did not suppress the CO defects, suggesting it serves as a separation-of-function allele. mys-1 encodes a histone acetyltransferase, whose homolog Tip60 acetylates H2AK5, a histone mark associated with transcriptional activation that is increased in xnd-1 mutant germ lines, raising the possibility that thresholds of H2AK5ac may differentially influence distinct germ line repair events. We also show that xnd-1 regulated him-5 transcriptionally, independently of mys-1, and that ectopic expression of him-5 suppressed the CO defects of xnd-1. Our work provides xnd-1 as a model in which to study the link between chromatin factors, gene expression, and genome stability.

Collaboration


Dive into the Arjumand Ghazi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carissa Perez Olsen

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Cynthia Kenyon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyle Holden

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Shaw-Wen Chen

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge