Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Arkadiusz Borek is active.

Publication


Featured researches published by Arkadiusz Borek.


Science | 2010

An Electronic Bus Bar Lies in the Core of Cytochrome bc1

Monika Świerczek; Ewelina Cieluch; Marcin Sarewicz; Arkadiusz Borek; Christopher C. Moser; P. Leslie Dutton; Artur Osyczka

Heme Communication Revealed by Asymmetry An electronic bus bar is an electrical conductor that connects several circuits. Świerczek et al. (p. 451) now find that a similar strategy is used by the protein cytochrome bc1 that plays a central role in cellular respiration and photosynthesis. Protein engineering was used to break the symmetry of a cytochrome bc1 homodimer, which revealed that the dimer is bridged by electron transfer between two hemes. This allows electrons to move freely within and between dimers to distribute between four catalytic sites. Electrons move across the entire structure of a functional dimer of an enzyme central to cellular bioenergetics. The ubiquinol–cytochrome c oxidoreductases, central to cellular respiration and photosynthesis, are homodimers. High symmetry has frustrated resolution of whether cross-dimer interactions are functionally important. This has resulted in a proliferation of contradictory models. Here, we duplicated and fused cytochrome b subunits, and then broke symmetry by introducing independent mutations into each monomer. Electrons moved freely within and between monomers, crossing an electron-transfer bridge between two hemes in the core of the dimer. This revealed an H-shaped electron-transfer system that distributes electrons between four quinone oxidation-reduction terminals at the corners of the dimer within the millisecond time scale of enzymatic turnover. Free and unregulated distribution of electrons acts like a molecular-scale bus bar, a design often exploited in electronics.


Biochimica et Biophysica Acta | 2010

Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc1 Implications for the mechanism of superoxide production

Marcin Sarewicz; Arkadiusz Borek; Ewelina Cieluch; Monika Świerczek; Artur Osyczka

In addition to its bioenergetic function of building up proton motive force, cytochrome bc1 can be a source of superoxide. One-electron reduction of oxygen is believed to occur from semiquinone (SQo) formed at the quinone oxidation/reduction Qo site (Qo) as a result of single-electron oxidation of quinol by the iron–sulfur cluster (FeS) (semiforward mechanism) or single-electron reduction of quinone by heme bL (semireverse mechanism). It is hotly debated which mechanism plays a major role in the overall production of superoxide as experimental data supporting either reaction exist. To evaluate a contribution of each of the mechanisms we first measured superoxide production under a broad range of conditions using the mutants of cytochrome bc1 that severely impeded the oxidation of FeS by cytochrome c1, changed density of FeS around Qo by interfering with its movement, or combined these two effects together. We then compared the amount of generated superoxide with mathematical models describing either semiforward or semireverse mechanism framed within a scheme assuming competition between the internal reactions at Qo and the leakage of electrons on oxygen. We found that only the model of semireverse mechanism correctly reproduced the experimentally measured decrease in ROS for the FeS motion mutants and increase in ROS for the mutants with oxidation of FeS impaired. This strongly suggests that this mechanism dominates in setting steady-state levels of SQo that present a risk of generation of superoxide by cytochrome bc1. Isolation of this reaction sequence from multiplicity of possible reactions at Qo helps to better understand conditions under which complex III might contribute to ROS generation in vivo.


Biochemistry | 2008

Movement of the Iron-Sulfur Head Domain of Cytochrome bc1 Transiently Opens the Catalytic Qo Site for Reaction with Oxygen

Arkadiusz Borek; Marcin Sarewicz; Artur Osyczka

Cytochrome bc(1), a key enzyme of biological energy conversion, generates or uses a proton motive force through the Q cycle that operates within the two chains of cofactors that embed two catalytic quinone oxidation/reduction sites, the Q(o) site and the Q(i) site. The Q(o) site relies on the joint action of two cofactors, the iron-sulfur (FeS) cluster and heme b(L). Side reactions of the Q cycle involve a generation of superoxide which is commonly thought to be a product of an oxidation of a highly unstable semiquinone formed in the Q(o) site (SQ(o)), but the overall mechanism of superoxide generation remains poorly understood. Here, we use selectively modified chains of cytochrome bc(1) to clearly isolate states linked with superoxide production. We show that this reaction takes place under severely impeded electron flow that traps heme b(L) in the reduced state and reflects a probability with which a single electron on SQ(o) is capable of reducing oxygen. SQ(o) gains this capability only when the FeS head domain, as a part of a catalytic cycle, transiently leaves the Q(o) site to communicate with the outermost cofactor, cytochrome c(1). This increases the distance between the FeS cluster and the remaining portion of the Q(o) site, reducing the likelihood that the FeS cluster participates in an immediate removal of SQ(o). In other states, the presence of both the FeS cluster and heme b(L) in the Q(o) site increases the probability of completion of short-circuit reactions which retain single electrons within the enzyme instead of releasing them on oxygen. We propose that in this way, cytochrome bc(1) under conditions of impeded electron flow employs the leak-proof short-circuits to minimize the unwanted single-electron reduction of oxygen.


Journal of Biological Chemistry | 2008

Demonstration of Short-lived Complexes of Cytochrome c with Cytochrome bc1 by EPR Spectroscopy IMPLICATIONS FOR THE MECHANISM OF INTERPROTEIN ELECTRON TRANSFER

Marcin Sarewicz; Arkadiusz Borek; Fevzi Daldal; Wojciech Froncisz; Artur Osyczka

One of the steps of a common pathway for biological energy conversion involves electron transfer between cytochrome c and cytochrome bc1. To clarify the mechanism of this reaction, we examined the structural association of those two proteins using the electron transfer-independent electron paramagnetic resonance (EPR) techniques. Drawing on the differences in the continuous wave EPR spectra and saturation recoveries of spin-labeled bacterial and mitochondrial cytochromes c recorded in the absence and presence of bacterial cytochrome bc1, we have exposed a time scale of dynamic equilibrium between the bound and the free state of cytochrome c at various ionic strengths. Our data show a successive decrease of the bound cytochrome c fraction as the ionic strength increases, with a limit of ∼120 mm NaCl above which essentially no bound cytochrome c can be detected by EPR. This limit does not apply to all of the interactions of cytochrome c with cytochrome bc1 because the cytochrome bc1 enzymatic activity remained high over a much wider range of ionic strengths. We concluded that EPR monitors just the tightly bound state of the association and that an averaged lifetime of this state decreases from over 100 μs at low ionic strength to less than 400 ns at an ionic strength above 120 mm. This suggests that at physiological ionic strength, the tightly bound complex on average lasts less than the time needed for a single electron exchange between hemes c and c1, indicating that productive electron transfer requires several collisions of the two molecules. This is consistent with an early idea of diffusion-coupled reactions that link the soluble electron carriers with the membranous complexes, which, we believe, provides a robust means of regulating electron flow through these complexes.


Biochemistry | 2012

Enzymatic Activities of Isolated Cytochrome bc1-like Complexes Containing Fused Cytochrome b Subunits with Asymmetrically Inactivated Segments of Electron Transfer Chains

Monika Czapla; Arkadiusz Borek; Marcin Sarewicz; Artur Osyczka

Homodimeric structure of cytochrome bc1, a common component of biological energy conversion systems, builds in four catalytic quinone oxidation/reduction sites and four chains of cofactors (branches) that, connected by a centrally located bridge, form a symmetric H-shaped electron transfer system. The mechanism of operation of this complex system is under constant debate. Here, we report on isolation and enzymatic examination of cytochrome bc1-like complexes containing fused cytochrome b subunits in which asymmetrically introduced mutations inactivated individual branches in various combinations. The structural asymmetry of those forms was confirmed spectroscopically. All the asymmetric forms corresponding to cytochrome bc1 with partial or full inactivation of one monomer retain high enzymatic activity but at the same time show a decrease in the maximum turnover rate by a factor close to 2. This strongly supports the model assuming independent operation of monomers. The cross-inactivated form corresponding to cytochrome bc1 with disabled complementary parts of each monomer retains the enzymatic activity at the level that, for the first time on isolated from membranes and purified to homogeneity preparations, demonstrates that intermonomer electron transfer through the bridge effectively sustains the enzymatic turnover. The results fully support the concept that electrons freely distribute between the four catalytic sites of a dimer and that any path connecting the catalytic sites on the opposite sides of the membrane is enzymatically competent. The possibility to examine enzymatic properties of isolated forms of asymmetric complexes constructed using the cytochrome b fusion system extends the array of tools available for investigating the engineering of dimeric cytochrome bc1 from the mechanistic and physiological perspectives.


Protein Engineering Design & Selection | 2012

Fusing two cytochromes b of Rhodobacter capsulatus cytochrome bc1 using various linkers defines a set of protein templates for asymmetric mutagenesis

Monika Czapla; Arkadiusz Borek; Marcin Sarewicz; Artur Osyczka

Cytochrome bc1 (mitochondrial complex III), one of the key enzymes of biological energy conversion, is a functional homodimer in which each monomer contains three catalytic subunits: cytochrome c1, the iron–sulfur subunit and cytochrome b. The latter is composed of eight transmembrane α-helices which, in duplicate, form a hydrophobic core of a dimer. We show that two cytochromes b can be fused into one 16-helical subunit using a number of different peptide linkers that vary in length but all connect the C-terminus of one cytochrome with the N-terminus of the other. The fusion proteins replace two cytochromes b in the dimer defining a set of available protein templates for introducing mutations that allow breaking symmetry of a dimer. A more detailed comparison of the form with the shortest, 3 amino acid, linker to the form with 12 amino acid linker established that both forms display similar level of structural plasticity to accommodate several, but not all, asymmetric patterns of mutations that knock out individual segments of cofactor chains. While the system based on a fused gene does not allow for the assessments of the functionality of electron-transfer paths in vivo, the family of proteins with fused cytochrome b offers attractive model for detailed investigations of molecular mechanism of catalysis at in vitro/reconstitution level.


Biochimica et Biophysica Acta | 2013

Catalytically-relevant electron transfer between two hemes bL in the hybrid cytochrome bc1-like complex containing a fusion of Rhodobacter sphaeroides and capsulatus cytochromes b

Monika Czapla; Ewelina Cieluch; Arkadiusz Borek; Marcin Sarewicz; Artur Osyczka

To address mechanistic questions about the functioning of dimeric cytochrome bc1 new genetic approaches have recently been developed. They were specifically designed to enable construction of asymmetrically-mutated variants suitable for functional studies. One approach exploited a fusion of two cytochromes b that replaced the separate subunits in the dimer. The fusion protein, built from two copies of the same cytochrome b of purple bacterium Rhodobacter capsulatus, served as a template to create a series of asymmetrically-mutated cytochrome bc1-like complexes (B–B) which, through kinetic studies, disclosed several important principles of dimer engineering. Here, we report on construction of another fusion protein complex that adds a new tool to investigate dimeric function of the enzyme through the asymmetrically mutated forms of the protein. This complex (BS–B) contains a hybrid protein that combines two different cytochromes b: one coming from R. capsulatus and the other — from a closely related species, R. sphaeroides. With this new fusion we addressed a still controversial issue of electron transfer between the two hemes bL in the core of dimer. Kinetic data obtained with a series of BS–B variants provided new evidence confirming the previously reported observations that electron transfer between those two hemes occurs on a millisecond timescale, thus is a catalytically-relevant event. Both types of the fusion complexes (B–B and BS–B) consistently implicate that the heme-bL–bL bridge forms an electronic connection available for inter-monomer electron transfer in cytochrome bc1.


Journal of Biological Chemistry | 2016

Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer.

Sebastian Pintscher; Patryk Kuleta; Ewelina Cieluch; Arkadiusz Borek; Marcin Sarewicz; Artur Osyczka

In biological energy conversion, cross-membrane electron transfer often involves an assembly of two hemes b. The hemes display a large difference in redox midpoint potentials (ΔEm_b), which in several proteins is assumed to facilitate cross-membrane electron transfer and overcome a barrier of membrane potential. Here we challenge this assumption reporting on heme b ligand mutants of cytochrome bc1 in which, for the first time in transmembrane cytochrome, one natural histidine has been replaced by lysine without loss of the native low spin type of heme iron. With these mutants we show that ΔEm_b can be markedly increased, and the redox potential of one of the hemes can stay above the level of quinone pool, or ΔEm_b can be markedly decreased to the point that two hemes are almost isopotential, yet the enzyme retains catalytically competent electron transfer between quinone binding sites and remains functional in vivo. This reveals that cytochrome bc1 can accommodate large changes in ΔEm_b without hampering catalysis, as long as these changes do not impose overly endergonic steps on downhill electron transfer from substrate to product. We propose that hemes b in this cytochrome and in other membranous cytochromes b act as electronic connectors for the catalytic sites with no fine tuning in ΔEm_b required for efficient cross-membrane electron transfer. We link this concept with a natural flexibility in occurrence of several thermodynamic configurations of the direction of electron flow and the direction of the gradient of potential in relation to the vector of the electric membrane potential.


Journal of Biological Chemistry | 2015

Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1 (S151P in Human) Affects the Equilibrium Distribution of [2Fe-2S] Cluster and Generation of Superoxide

Arkadiusz Borek; Patryk Kuleta; Robert Ekiert; Rafał Pietras; Marcin Sarewicz; Artur Osyczka

Background: Mutation S151P was found in patients with exercise intolerance. Results: Bacterial analogous substitution (G167P) influences movement of the iron-sulfur protein head domain (ISP-HD), increasing ROS production. Conclusion: This correlation corroborates the recently proposed “semireverse” electron transfer mechanism of ROS production. Significance: The molecular effect identified for S151P may be valid for several other human mutations that affect motion of ISP-HD. Cytochrome bc1 is one of the key enzymes of many bioenergetic systems. Its operation involves a large scale movement of a head domain of iron-sulfur protein (ISP-HD), which functionally connects the catalytic quinol oxidation Qo site in cytochrome b with cytochrome c1. The Qo site under certain conditions can generate reactive oxygen species in the reaction scheme depending on the actual position of ISP-HD in respect to the Qo site. Here, using a bacterial system, we show that mutation G167P in cytochrome b shifts the equilibrium distribution of ISP-HD toward positions remote from the Qo site. This renders cytochrome bc1 non-functional in vivo. This effect is remediated by addition of alanine insertions (1Ala and 2Ala) in the neck region of the ISP subunit. These insertions, which on their own shift the equilibrium distribution of ISP-HD in the opposite direction (i.e. toward the Qo site), also act in this manner in the presence of G167P. Changes in the equilibrium distribution of ISP-HD in G167P lead to an increased propensity of cytochrome bc1 to generate superoxide, which becomes evident when the concentration of quinone increases. This result corroborates the recently proposed model in which “semireverse” electron transfer back to the Qo site, occurring when ISP-HD is remote from the site, favors reactive oxygen species production. G167P suggests possible molecular effects of S151P (corresponding in sequence to G167P) identified as a mitochondrial disease-related mutation in human cytochrome b. These effects may be valid for other human mutations that change the equilibrium distribution of ISP-HD in a manner similar to G167P.


Biochimica et Biophysica Acta | 2016

Mitochondrial disease-related mutations at the cytochrome b-iron-sulfur protein (ISP) interface: Molecular effects on the large-scale motion of ISP and superoxide generation studied in Rhodobacter capsulatus cytochrome bc1.

Robert Ekiert; Arkadiusz Borek; Patryk Kuleta; Justyna Czernek; Artur Osyczka

One of the important elements of operation of cytochrome bc1 (mitochondrial respiratory complex III) is a large scale movement of the head domain of iron–sulfur protein (ISP-HD), which connects the quinol oxidation site (Qo) located within the cytochrome b, with the outermost heme c1 of cytochrome c1. Several mitochondrial disease-related mutations in cytochrome b are located at the cytochrome b-ISP-HD interface, thus their molecular effects can be associated with altered motion of ISP-HD. Using purple bacterial model, we recently showed that one of such mutations — G167P shifts the equilibrium position of ISP-HD towards positions remote from the Qo site as compared to the native enzyme [Borek et al., J. Biol. Chem. 290 (2015) 23781-23792]. This resulted in the enhanced propensity of the mutant to generate reactive oxygen species (ROS) which was explained on the basis of the model evoking “semireverse” electron transfer from heme bL to quinone. Here we examine another mutation from that group — G332D (G290D in human), finding that it also shifts the equilibrium position of ISP-HD in the same direction, however displays less of the enhancement in ROS production. We provide spectroscopic indication that G332D might affect the electrostatics of interaction between cytochrome b and ISP-HD. This effect, in light of the measured enzymatic activities and electron transfer rates, appears to be less severe than structural distortion caused by proline in G167P mutant. Comparative analysis of the effects of G332D and G167P confirms a general prediction that mutations located at the cytochrome b-ISP-HD interface influence the motion of ISP-HD and indicates that “pushing” ISP-HD away from the Qo site is the most likely outcome of this influence. It can also be predicted that an increase in ROS production associated with the “pushing” effect is quite sensitive to overall severity of this change with more active mutants being generally more protected against elevated ROS. This article is part of a Special Issue entitled ‘EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2–6, 2016’, edited by Prof. Paolo Bernardi.

Collaboration


Dive into the Arkadiusz Borek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge