Arkadiusz K. Kuczaj
University of Twente
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Arkadiusz K. Kuczaj.
Journal of Turbulence | 2006
Arkadiusz K. Kuczaj; Bernardus J. Geurts
A numerical investigation of turbulent flow, subject to deterministic broadband forcing, is presented. Explicit forcing procedures are included that represent the simultaneous agitation of a wide spectrum of length scales, including both large scales and a band of much smaller scales. Such forcing induces a multiscale modulation of turbulent flow that is motivated by flow through complex objects and along irregular boundaries. Two types of forcing procedures are investigated; with reference to the collection of forced modes these procedures are classified as ‘constant energy’ or ‘constant-energy input rate’. It is found that a considerable modulation of the traditional energy cascading can be introduced with a specific forcing strategy. In spectral space, forcing yields strongly localized deviations from the common Kolmogorov scaling law, directly associated with the explicitly forced scales. In addition, the accumulated effect of forcing induces a significant non-local alteration of the kinetic energy including the spectrum for the large scales. Consequently, a manipulation of turbulent flow can be achieved over an extended range, well beyond the directly forced scales. Compared to flow forced in the large scales only, the energy in broadband forced turbulence is found to be transferred more effectively to smaller scales. The turbulent mixing of a passive scalar field is also investigated, in order to quantify the physical-space modifications of transport processes in multiscale forced turbulence. The surface area and wrinkling of level sets of the scalar field are monitored as measures of the influence of explicit forcing on the local and global mixing efficiency. At small Schmidt numbers, the values of surface area are mainly governed by the large-scale sweeping effect of the flow while the wrinkling is influenced mainly by the agitation of the smaller scales.
EPL | 2006
Arkadiusz K. Kuczaj; Bernardus J. Geurts; Detlef Lohse
The response of turbulent flow to time-modulated forcing is studied by direct numerical simulations of the Navier-Stokes equations. The large-scale forcing is modulated via periodic energy input variations at frequency ω. The response is maximal for frequencies in the range of the inverse of the large eddy turnover time, confirming the mean-field predictions of von der Heydt, Grossmann and Lohse (Phys. Rev. E, 67 (2003) 046308). In accordance with the theory the response maximum shows only a small dependence on the Reynolds number. At sufficiently high frequencies the amplitude of the kinetic energy response decreases as 1/ω. For frequencies beyond the range of maximal response, a significant change in the phase-shift relative to the time-modulated forcing is observed. For large ω the phase shift approaches roughly 90° for the total energy and 180° for the energy dissipation rate.
Physical Review E | 2006
Arkadiusz K. Kuczaj; Bernard J. Geurts; W. David McComb
Classically, large-scale forced turbulence is characterized by a transfer of energy from large to small scales via nonlinear interactions. We have investigated the changes in this energy transfer process in broadband forced turbulence where an additional perturbation of flow at smaller scales is introduced. The modulation of the energy dynamics via the introduction of forcing at smaller scales occurs not only in the forced region but also in a broad range of length scales outside the forced bands due to nonlocal triad interactions. Broadband forcing changes the energy distribution and energy transfer function in a characteristic manner leading to a significant modulation of the turbulence. We studied the changes in this transfer of energy when changing the strength and location of the small-scale forcing support. The energy content in the larger scales was observed to decrease, while the energy transport power for scales in between the large and small scale forcing regions was enhanced. This was investigated further in terms of the detailed transfer function between the triad contributions and observing the long-time statistics of the flow. The energy is transferred toward smaller scales not only by wave numbers of similar size as in the case of large-scale forced turbulence, but by a much wider extent of scales that can be externally controlled.
Journal of Computational Physics | 2016
E.M.A. Frederix; Milos Stanic; Arkadiusz K. Kuczaj; Markus Nordlund; Bernard J. Geurts
A new numerical method for the solution of an internally mixed spatially homogeneous sectional model for aerosol nucleation and condensation is proposed. The characteristics method is used to predict droplet sizes within a discrete time step. The method is designed such that 1) a pre-specified number of moments of the droplet size distribution may be preserved, 2) there exists no time step stability restriction related to the condensation rate and section size, 3) highly skewed fixed sectional distributions may be used and 4) it is straightforward to extend to spatially inhomogeneous settings and to incorporate droplet coagulation and break-up. We derive, starting from mass conservation, a consistent internally mixed multi-species aerosol model. For certain condensational growth laws analytical solutions exist, against which the method is validated. Using two-moment and four-moment-preserving schemes, we find first order convergence of the numerical solution to the analytical result, as a function of the number of sections. As the four-moment-preserving scheme does not guarantee positivity of the solution, a hybrid scheme is proposed, which, when needed, locally reverts back to two-moment preservation, to prevent negativity. As an illustration, the method is applied to a complete multi-species homogeneous nucleation and condensation problem.
Inhalation Toxicology | 2017
Markus Nordlund; Miloslav Belka; Arkadiusz K. Kuczaj; Frantisek Lizal; Jan Jedelsky; Jakub Elcner; Miroslav Jicha; Youri Sauser; Soazig Le Bouhellec; Stéphane Cosandey; Shoaib Majeed; Gregory Vuillaume; Manuel C. Peitsch; Julia Hoeng
Abstract Inhalation of aerosols generated by electronic cigarettes leads to deposition of multiple chemical compounds in the human airways. In this work, an experimental method to determine regional deposition of multicomponent aerosols in an in vitro segmented, realistic human lung geometry was developed and applied to two aerosols, i.e. a monodisperse glycerol aerosol and a multicomponent aerosol. The method comprised the following steps: (1) lung cast model preparation, (2) aerosol generation and exposure, (3) extraction of deposited mass, (4) chemical quantification and (5) data processing. The method showed good agreement with literature data for the deposition efficiency when using a monodisperse glycerol aerosol, with a mass median aerodynamic diameter (MMAD) of 2.3 μm and a constant flow rate of 15 L/min. The highest deposition surface density rate was observed in the bifurcation segments, indicating inertial impaction deposition. The experimental method was also applied to the deposition of a nebulized multicomponent aerosol with a MMAD of 0.50 μm and a constant flow rate of 15 L/min. The deposited amounts of glycerol, propylene glycol and nicotine were quantified. The three analyzed compounds showed similar deposition patterns and fractions as for the monodisperse glycerol aerosol, indicating that the compounds most likely deposited as parts of the same droplets. The developed method can be used to determine regional deposition for multicomponent aerosols, provided that the compounds are of low volatility. The generated data can be used to validate aerosol deposition simulations and to gain insight in deposition of electronic cigarette aerosols in human airways.
Journal of Computational Physics | 2016
Markus Nordlund; Milos Stanic; Arkadiusz K. Kuczaj; E.M.A. Frederix; Bernard J. Geurts
Two modified segregated PISO algorithms are proposed, which are constructed to avoid the development of spurious oscillations in the computed flow near sharp interfaces of conjugate fluid-porous domains. The new collocated finite volume algorithms modify the Rhie-Chow interpolation to maintain a correct pressure-velocity coupling when large discontinuous momentum sources associated with jumps in the local permeability and porosity are present. The Re-Distributed Resistivity (RDR) algorithm is based on spreading flow resistivity over the grid cells neighboring a discontinuity in material properties of the porous medium. The Face Consistent Pressure (FCP) approach derives an auxiliary pressure value at the fluid-porous interface using momentum balance around the interface. Such derived pressure correction is designed to avoid spurious oscillations as would otherwise arise with a strictly central discretization. The proposed algorithms are successfully compared against published data for the velocity and pressure for two reference cases of viscous flow. The robustness of the proposed algorithms is additionally demonstrated for strongly reduced viscosity, i.e., higher Reynolds number flows and low Darcy numbers, i.e., low permeability of the porous regions in the domain, for which solutions without unphysical oscillations are computed. Both RDR and FCP are found to accurately represent porous media flow near discontinuities in material properties on structured grids. Two modified segregated PISO algorithms are proposed.The Rhie-Chow interpolation is modified to maintain a correct pressure-velocity coupling when large discontinuous momentum sources are present.The proposed algorithms are successfully compared against published data for the velocity and pressure for two reference cases of viscous flow.The robustness of the proposed algorithms is additionally demonstrated for high Reynolds number flows and low Darcy numbers.
Inhalation Toxicology | 2018
Tomasz R. Sosnowski; Katarzyna Jabłczyńska; Marcin Odziomek; Walter K. Schlage; Arkadiusz K. Kuczaj
Abstract Direct physicochemical interactions between the major components of electronic cigarette liquids (e-liquids): glycerol (VG) and propylene glycol (PG), and lung surfactant (LS) were studied by determining the dynamic surface tension under a simulated breathing cycle using drop shape method. The studies were performed for a wide range of concentrations based on estimated doses of e-liquid aerosols (up to 2500 × the expected nominal concentrations) and for various VG/PG ratios. The results are discussed as relationships among mean surface tension, surface tension amplitude, and surface rheological properties (dilatational elasticity and viscosity) versus concentration and composition of e-liquid. The results showed that high local concentrations (>200 × higher than the estimated average dose after a single puffing session) may induce measurable changes in biophysical activity of LS; however, only ultra-high e-liquid concentrations inactivated the surfactant. Physiochemical characterization of e-liquids provide additional insights for the safety assessment of electronic nicotine delivery systems (ENDS).
NUCLEATION AND ATMOSPHERIC AEROSOLS: 19th International Conference | 2013
E.M.A. Frederix; Arkadiusz K. Kuczaj; M. Nordlund; Christoph Winkelmann; Bernardus J. Geurts
In the process of single-species homogeneous vapor condensation into aerosol, surface is created between liquid and vapor. The energy of formation of such surface limits the condensation of vapor from a supersaturated state. Nucleation, the mechanism of generation of embryo sites, or nuclei, on which vapor is able to condense, is an important process. Developing an understanding of this process is important, as it may lead to a considerable contribution to many engineering problems, as well as atmospheric and environmental science. In this work, we present an OpenFOAM®-based numerical simulation tool, which is capable of predicting aerosol formation using a two-moment representation of the aerosol and classical nucleation theory. We aim at developing a flexible utility, which enables researchers interested in various aerosol production-related applications to quickly study concepts like aerosol nucleation, condensation, diffusion and transport. We compare our numerical approach with the results of physical experiments, each using a laminar flow diffusion chamber (Ref. [1, 2, 3]) with different species and/or carrier gasses. A good agreement between experimental and numerical results for the aerosol droplet number density is shown.
4th International Conference on Porous Media and its Applications in Science, Engineering and Industry 2012 | 2012
D.J. Lopez Penha; Bernardus J. Geurts; M. Nordlund; Arkadiusz K. Kuczaj; I. Zinovik; Christoph Winkelmann; Julia Olegivna Mikhal
In this paper we demonstrate the ability of a volume-penalizing immersed boundary method to predict pore-scale fluid transport in realistic porous media. A numerical experiment is designed that recreates the exact conditions of a real flow experiment through a fibrous porous medium. Under a constant volumetric flow rate air is forced through the porous sample and the pressure drop across its length is accurately measured. The exact pore geometry is obtained using highresolution micro-computed tomography, and the data is, after processing, directly inserted into the flow solver. Simulations are performed on a uniform Cartesian grid, spanning the entire physical domain (i.e., including both fluid and solid regions)— a feature which represents one of the major benefits of volume penalization. We demonstrate that the numerical results agree well with the experiment and that an error of approximately < 10% is attainable on a grid of 512×256×256 cells.
Archive | 2008
Arkadiusz K. Kuczaj; Bernardus J. Geurts
The effects of explicit flow modulation on the dispersion of a passive scalar field are studied. Broadband forcing is applied to homogeneous isotropic turbulence to modulate the energy cascading and alter the kinetic energy spectrum. Consequently, a manipulation of turbulent flow can be achieved over an extended range of scales beyond the directly forced ones. This modifies transport processes and influences the physical-space turbulent mixing of a passive scalar field. We investigate by direct numerical simulation the stirring-efficiency associated with turbulence modified by forcing. This is quantified by monitoring the surface-area and wrinkling of a level-set of the passive scalar field. We consider different forcing to manipulate the quality and rate of mixing. The instantaneous mixing efficiency measured in terms of surface-area or wrinkling is found to increase when additional energy is introduced at the smaller scales. The increased intensity of small scales significantly influences the small-scale mixing characteristics depicted by wrinkling, while the forcing of large scales primarily affects the surface-area. Evaluation of geometrical statistics in broadband-forced turbulence indicates that the self-amplification process of vorticity and strain is diminished. This leads generally to smaller extremal values of the velocity gradients but higher average values as a result of the competition between the natural cascading processes and the explicit small-scales forcing.